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PREFACE

The study of varieties of algebraic structures, i.e. classes of algebraic
structures definable by identical relations, was originated by G. Birkhoff
[7] and B. H. Neumann [67] in the 1930’s. A wide expansion of the ideas
and methods of variety theory began in the 1950’s, when the work of G.
Higman, A. I. Mal’cev, B. H. Neumann, H. Neumann, A. Tarski, W. Specht
was particularly influential. Since then the intensity of work in this area of
algebra has remained very high, and the number of publications devoted to
identities and varieties of algebraic structures is now counted in the thou-
sands. Various aspects of the field have been systematically presented in
numerous monographs and surveys — see for example {3, 12, 15, 16, 18, 64,
68, 80, 83, 84, 85, 86, 105].

As a result of this expansion, at the present moment one can speak of
a number of independent but closely related algebraic theories: varieties of
groups, varieties of associative algebras and polynomial identities, varieties
of Lie algebras, varieties of semigroups, varieties of lattices and universal
algebras, and others. We say “independent” because each of these fields
has its own motivations and stimuli for development and its own natural
problems. On the other hand, they are developing in close interconnection

and are constantly influencing one another.

The present book is devoted to one of the newest branches of vari-
ety theory: varieties of group representations. This subject has existed for
about twenty years; its foundations were laid in papers of B. I. Plotkin and
his students in the late 1960’s—early 1970’s. There are many motivations for
the study of varieties of group representations. First, from the standpoint
of universal algebra all representations of groups over a given commutative

ring form a variety of two-sorted algebras, with quite natural free ob jects,

ix
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verbal subobjects and other standard attributes of variety theory. Second,
a number of classical theorems and problems are, in fact, concerned with
group representations satisfying certain identical relations and, as a result,
can be naturally interpreted in the framework of the theory of varieties. Here
one can mention a theorem of Kolchin [42] on triangulability of a unipotent
matrix group, a theorem of Kaloujnine [38] on nilpotency of a stable group
of automorphisms, and a series of problems and results concerning the aug-
mentation ideal and dimension subgroups. Third, the theory of varieties of
group representations has numerous connections with varieties of groups,
varieties of associative and Lie algebras, group rings, etc., which can pro-
vide important applications in both directions. This was first demonstrated
by Bryce [9] and Ol’shansky [71] who applied the technique of varieties of
group representations to investigating varieties of abstract groups.
However, in contrast with “usual” algebras — groups, rings, etc. — rep-
resentations of groups are two-sorted algebraic structures, i.e. they have two
underlying sets. Therefore the theory of varieties of group representations
exibits a number of characteristic features and essentially new problems.
During the last decades the importance of many-sorted algebraic structures
has been constantly increasing, largely because of numerous applications
in the theory of automata, data banks, theoretical computer science, etc.
Group representations are, probably, the most comprehensively studied ob-
jects of this type, and certain methods of the theory of varieties of group
representations can be (and have been) successfully applied to the study
of other closely related objects, such as representations of semigroups, rep-
resentations of associative and Lie algebras, group actions on rings, and
linear automata. Among these related fields, one should especially mention
the rapidly expanding theory of varieties of representations of Lie algebras,

presented in the recent book of Razmyslov [84].

The theory of varieties of group representations has been developing
steadily since its inception, mainly in the USSR. During the first ten years
about eighty papers were published in the field, including two important
surveys of Plotkin [76, 77]. The results of this period were, to a certain
extent, summarized in a monograph of Plotkin and the author [80], pub-

lished in 1983 and until now the only detailed exposition of the subject.
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This monograph was mostly devoted to the general framework of the the-
ory which by the beginning of the 1980°s was well developed and stable. At
the same time, a number of more specialized and advanced topics were not
covered in [80].

In the present notes several of these topics are considered. In no way
does this book pretend to be a comprehensive treatment of the subject (as
is clear enough from its title). Our aim is to familiarize the reader with the
current state of knowledge in the areas we treat, to establish a number of
interesting results, and to attract attention to several promising problems.
The material presented here is quite recent: the greater part of the results
have appeared within the last four years. Of course, the choice of material

reflects the personal taste of the author.

The book starts with a preparatory Chapter 0 in which we collect all
the necessary definitions, notation and facts from the theory of varieties of
group representations. As a result, one can read this text independently of
[80]. The reader familiar with the foundations of the theory can skip this

chapter without any harm.

The main body of the book consists of four chapters. Chapter 1 deals
with stable varieties. These varieties play the role analogous to that of
nilpotent varieties of groups and linear algebras, and are among the most
investigated in the field. A large part of the chapter is concerned with
the important property of homogeneity, which goes back to Mal’cev [61].
In particular, one of the principal results states that over a field of char-
acteristic zero there exists a canonical one-to-one correspondence between
all varieties of associative algebras and the so-called homogeneous Magnus
varieties of group representations, under which n-nilpotent varieties of al-
gebras and n-stable (homogeneous) varieties of representations correspond
to each other. This correspondence makes it possible to involve the well
developed theory of varieties of algebras in the investigation of varieties of
group representations. The main technical tool is the embedding of a free
group into the algebra of formal power series, discovered by Magnus [57].
Somewhat isolated in the first chapter is § 1.6, where the main role belongs

to connections with Lie algebras. Using Zel’'manov’s theorem [105] on the
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nilpotency of Lie algebras with the Engel identity, we show there that over a
field of characteristic zero every unipotent variety is stable. In other words,
the identity (z — 1)™ implies the identity (z; — 1)(z2 — 1)...(zn — 1) for
some N = N(n).

Chapter 2 is concerned with locally finite and locally finite-dimensional
varieties. Such varieties are generated by their finite and, respectively, finite-
dimensional representations, and this fact results in the character of the
techniques used: periodic matrix groups, critical representations, irreducible
representations of finite groups, etc. Generally speaking, the questions dis-
cussed here are rather traditional for variety theory, and the material of the
chapter was developed under the strong influence of the theory of group va-
rieties, in particular, of the excellent book of Hanna Neumann [68]. Among
the results of Chapter 2, one can mention a nice and somewhat unexpected
characterization of locally finite and locally finite-dimensional varieties, pre-
sented in §2.2.

Chapter 3 is entirely devoted to the finite basis problem. The varieties
considered there are locally finite or locally finite-dimensional, so that this
chapter is a natural continuation of the previous one. Its main result is a
theorem of the author and Nguyen Hung Shon [101] asserting that every
stable-by-finite representation has a finite basis for its identities. It implies,
in particular, that every representation of a finite group is finitely based.
The proof uses to the full extent the machinery of critical objects and Cross
varieties, as developed in papers of Oates—Powell [69] and Kovacs—Newman

[44], and a number of other technical tools specific to group representations.

Our final Chapter 4 does not focus on a single topic. Rather, it provides
a selection of mutually independent results, including the most recent, which
are of interest in their own right. Sections 4.1-4.2 are devoted to the finite
basis problem for varieties satisfying multilinear identities, and to some
natural connections between multilinear identities of group representations
and those of associative algebras. In particular, using these connections
and Kemer’s solution of the Specht Problem [40], we deduce the following,
a priori far from evident, fact: every system of multilinear identities of
group representations over a field of characteristic zero is finitely based.

Several other results show that if a variety satisfies a certain multilinear
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identity, then it is finitely based. Sections 4.3-4.4 deal with pure varieties
over integral domains. Among the results of these sections, we mention an
interesting theorem of G. M. Bergman on the product of ideals in free group
rings which, in particular, gives an alternative proof of an earlier result of
the author [94]: the product of pure varieties over a Dedekind domain is
pure. An example outlined at the end of § 4.3 shows that this result cannot
be generalized to arbitrary integral domains. Finally, the purpose of § 4.5
is to demonstrate that the theory of varieties of group representations has
feedback to other fields of algebra. In this section we present a brief overview
of some applications of our theory to varieties of groups, varieties of rings,

and dimension subgroups.

For more detailed information concerning the contents of the book,
the reader is referred to the introductory remarks at the beginning of each

chapter.

One of the appealing features of the theory of varieties of group rep-
resentations is the abundance and diversity of open problems. Some of
these problems are mentioned in the present work, while many other can be
found in [80]. Another attraction of the field is the broad range of techniques
used. Here one can meet methods of traditional representation theory and
the Fox free differential calculus, polynomial identities of rings and critical
representations, the Magnus theory of the free group and connections with
Lie algebras, free ideal rings and the classical Burnside theorems on matrix
groups. Therefore we hope that the field treated in this book will be of

interest to specialists in various branches of algebra.

We have tried to make this book accessible to a broad spectrum of read-
ers including graduate students. A good graduate course in algebra (at the
level of, say, Jacobson’s Basic Algebra) plus some knowledge of variety the-
ory should provide the necessary background. The exposition is, as a rule,
detailed and complete, although, as in any more or less advanced course,
it was impossible to make it absolutely self-contained. Sometimes we use
without proofs certain facts from the theory of groups, rings, modules, etc.,

but in such cases precise references to the literature are always provided.
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Despite its modest size, this book has had a difficult history. I worked
on it during a very strained period in my life, and it is unlikely that I would
have overcome the numerous obstacles without the help of many friends
and colleagues. In the first place I am deeply indebted to Gregory Cher-
lin, Richard Lyons, Matthew Miller, Simon Thomas and Robert Wilson,
who carefully read various portions of the manuscript and made numerous
corrections and improvements: grammatical, stylistic and sometimes even
mathematical. I am grateful to George Bergman for valuable and stimulat-
ing conversations in connection with § 4.3; to David Rohrlich and Eugene
Speer for their help during my struggles with English grammar and vari-
ous versions of TEX; and to the referee for an interesting and useful report.
Finally, I would like to express my appreciation to Arkadii Slin’ko and espe-
cially to Earl Taft, who helped me to recover the first draft of the manuscript

after I had been separated from it for a long time.

S. M. Vovsi
New Brunswick, New Jersey

July 1991



Chapter 0

PRELIMINARIES

This introductory chapter provides a brief survey of basic concepts
and facts from the theory of varieties of group representations which will
be necessary for reading the main body of the book. The presentation is
concise but, in general, self-contained: only a few standard and routine
proofs are omitted. For a more detailed exposition of the foundations of the

theory the interested reader is referred to Chapter 1 of [80].

0.1. Representations

Let K be an arbitrary but fixed commutative ring with unit which will
usually be referred to as the ground ring. Consider a linear representation of
a group G on a (left unitary) K-module V, that is, a group homomorphism
p: G — AutgV. We suppose that elements of AutgV act on V on the
right; then, denoting for anyv € V, g € G

vog="vp(g),

we obtain an action of G on V,i.e. a map (v,9) —vogfromV xG to V
satisfying the following conditions:

(i) for every g € G the map v — v o g is an automorphism of V;

(ii) (vogi)ogs =vo(g1gz) for every v € V, g1,92 € G.
Conversely, suppose there is given an action o of a group G on a K-module
V. Denoting for every g € G the map v — vog by p(g), we evidently obtain

a representation p: G — AutV.
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Thus from the standpoint of many-sorted universal algebra, a represen-
tation of a group over K can be treated as a two-sorted algebraic structure
(V,G,0), where V is a K-module, G a group, and o an action of G on V.
We will not adopt this standpoint in the present book, although it might
be useful to keep it in mind, at least with respect to possible analogies,
perspectives and generalizations.

Throughout these notes, a representation p : G — AutV is usually
denoted by p = (V,G); V is the module and G is the acting group of p. If p =
(V,@Q) is a representation, then its kernel Ker p = Ker(V,G) is the kernel
of the corresponding homomorphism p : G — AutV; p is called faithful if
Kerp = {1}. In this case G can be considered as a subgroup of AutV.
A representation p = (V,G) is called trivial , or a unit representation, if
Kerp = G. If V = {0}, then p is said to be a zero representation.

In general, let p = (V, G) be an arbitrary representation and H = Kerp.
Then the group G/H = G acts on V by the rule vogH = vog. We obtain a
representation 5 = (V, G) which is certainly faithful; it is called the faithful
tmage of p .

The group algebra of G over K is denoted by KG. The group G
acts on K G by right multiplication giving the (right) regular representation
(KG,G) which is denoted by RegyG. If p = (V,G) is any representation,
then the action of G on V induces the action of KG on V by the natural
rule: for arbitrary v € V and v = ) A\jg; € KG

vou = Z)‘i(vogi)‘

Therefore V can be regarded as a right KG-module (when it is clear from
the context, we often say “G-module” instead of “K G-module”). Con-
versely, a K G-module structure on V determines an action of G on V, i.e.
a representation (V, G).

Let p = (V,G) and ¢ = (W, H) be arbitrary representations over K.
A homomorphism p : p — o is a pair consisting of a homomorphism of
K-modules g : V — W and a homomorphism of groups p : G — H (it is

convenient to denote both these maps by a single letter) such that

VweV,geG: (vog)=0"og" (1)
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The class of all group representations over K together with all homomor-
phisms forms a category denoted by REP-K. It is easy to verify that a
homomorphism g : (V,G) — (W, H) is a monomorphism (epimorphism,
isomorphism) in REP-K if and only if both 4 : V — W and o : G — H are
monomorphisms (epimorphisms, isomorphisms). If p = (V, G) is a represen-
tation, H a subgroup of G and W an H-submodule of V, then there natu-
rally arises a representation (W, H) called a subrepresentation of p. Clearly
o is a subrepresentation of p if and only if there exists a monomorphism
o — p.

Let p : (V,G) — (W, H) be a homomorphism and let V5 = Ker(V —
W), Gy = Ker(G — H). It is easy to see that (V;,Gy) is subrepresentation
of (V,G), and that the following conditions are satisfied:

(i) Go <G ;

(ii) Vb is a Go-submodule of V;

(3i1) the induced action of Go on V/V; is trivial.

The subrepresentation (Vp, Go) 1s said to be the kernel of the homomorphism
p and is denoted by Ker .

On the other hand, let po = (V4,Gy) be a subrepresentation of p =
(V,G) satisfying (i)-(iii). Then the group G/Gy acts on the module V/Vj
by the rule

(v+ Vo) o (9Go) =vog+ Vo,

and we obtain a factor-representation p/po = (V/Vy,G/Gy). There exists
a canonical epimorphism & : p — p/po whose kernel is pg, and usual ar-
guments show that every epimorphic image of p can be realized 1n such a
way.

A homomorphism p : (V,G) — (W,H) is called right if p : V —
W is an isomorphism. Up to isomorphism, we may assume that a right
homomorphism acts identically on the left side of the representation. For
example, the canonical epimorphism of a representation p = (V,G) on its
faithful image p = (V, G/Kerp) is a right epimorphism. Furthermore, it is
clear that every right epimorphic image of p is isomorphic to some factor-
representation (V,G/H) where H C Ker p. Hence the faithful image of any
representation is its “smallest” right epimorphic image.

Two representations are said to be egquivalent if their faithful images
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are isomorphic. The fact that representations p and ¢ are isomorphic or

equivalent is denoted by p ~ ¢ or p ~ ¢ respectively. In this notation
p~O = p~a.

Note. In the classical theory of group representations, two representa-
tions (V,G) and (W, G) of a fized group G are called equivalent if there exists
an isomorphism g : V — W such that (vog)* =vfogforallveV,ge G
(cf. (1)) . In the category REP-K of representations of arbitrary groups
this notion becomes a particular case of isomorphism, and is not very use-
ful. The definition of equivalent representations adopted in these notes is
motivated by the following observation: any two representations with iso-
morphic faithful images originate from the same faithful representation, i.e.
from the same action. Therefore, as far as one is concerned with abstract
properties of group actions, two representations with isomorphic faithful

images should be treated as “equivalent” in some natural sense.

Let p; = (V;,G:), 1 € I, be arbitrary representations. Denote by V =
ﬁVi the Cartesian product of the K-modules V; and by G = ﬁG’i the
Cartesian product of the groups G;. Then G acts on V componentwise and
so there arises a representation (V,G) which is called the Cartesian product
of the representations p; and is denoted by ﬁpi. It is easy to see that pis the
product of the objects p; in the category REP-K. On the other hand, if we
take the (restricted!) direct sum of modules @ V; and the direct product
of groups [] Gi, then the naturally arising representation (@ V;i,[] G:) is
called the direct product of the p;’s and is denoted by [] p:.

An operation on classes of group representations is a function U assign-

ing to every class X of representations a class UX such that
XCUx Ccuy

whenever X C ). The product of operations is defined by the natural rule

(UV)X = U(VX). An operation U is called a closure operation if U2 = U;

in this case the class UX is U-closed for every X, that is U(UX) = UX.
From now on we fix the notation of several closure operations. Namely,

if X is an arbitrary class of representations, then:
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SX is the class of all subrepresentations of X-representations (i.e. of
representations from X);

QX is the class of all homomorphic images of X-representations;

CX is the class of Cartesian products of X-representations;

DX (DoX) is the class of direct products (of a finite number) of X-
representations;

VX is the class of all representations p such that there exists a right
epimorphic image of p belonging to X.

0.2. Identities and varieties

THE MAIN CONCEPTS AND EXAMPLES. Let F be the absolutely free
group of countable rank with free generators z,,z2,..., KF its group al-
gebra over the ground ring K, and u(z,...,2n) = 3 Aifi(#1,...,25) an
element of K F. Suppose there is given a representation p = (V,G) over K.
If g1,...,9n € G then u(g1,...,9xn), being an element of the group algebra
KG@G, acts naturally on V. We say that the formula

you(zy,...,zy) =0
is an t{dentity of the representation p if
'Uou(gl’---,gn) =0

foranyv € Vand g1,..-,9n € G. For brevity, the element v = u(z,,...,z,)
is also said to be an identity of p. In other words, v € K F' is an identity of
p = (V,G) i, for arbitrary ¢1,...,9» € G,

u(p(g1),-..,p(gn)) =0

in EndgV. If X is a class of representations, then u € KF is called an

identity of X if it is an identity of every representation from X.

0.2.1. Definition. A class of group representations is called a variety

if 1t consists of all representations satisfying a certain set of identities.
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A two-sided ideal of the group algebra K F is said to be fully invariant
(or completely invariant, or verbal), if it is invariant under all endomor-
phisms of K F induced by endomorphisms of the group F. Note that a
fully invariant ideal need not be invariant under all endomorphisms of the
K-algebra K F. For example, let A be the augmentation tdeal of K F, that
is, the ideal generated by all elements f — 1, f € F. Clearly it is fully
invariant. On the other hand, A is not invariant under any endomorphism
of K F taking a free generator z; to an invertible element A # 1 of K.

The significance of fully invariant ideals for our theory is illustrated by
the following theorem. For every class of representations X denote by X'“
the set of all its identities in K F. Conversely, for every subset U of K F
denote by U” the class of all representations satisfying the identities from
this subset.

0.2.2. Theorem. The maps a and 3 determine a Galois correspon-
dence between classes of group representations and subsets of KF. The
closed elements under this correspondence are precisely the varieties of group

representations over K and the fully invariant tdeals of KF.

Proof. It is evident that the maps a and 3 satisfy the following con-
ditions:

() X1 CX, = X2 XS, Uy CU, =UP DU5

() x*? > x, UPDU.
This exactly means that the maps a and 8 determine a Galois correspon-
dence (see for example [12, Ch.2, §1]). From general properties of Galois
correspondences, it follows that a class of representations X is closed (i.e.
X = X"ﬁ) if and only if X = UP for some U C KF. Similarly, a subset
U of KF is closed (i.e. U = UP?®) if and only if U = X for some class
of representations X. Furthermore, if we restrict the maps a and 3 to the
systems of closed elements, they will be one-to-one and mutually inverse.

We now prove the second assertion of the theorem. By definition, a
class of representations X is a variety if and only if X = UP for some
U C KF. Hence varieties and closed classes are just the same.

Let U be a closed subset in KF. Then U = X for some class X, that

is, U is the set of all identities of X. It is easy to see that such a set must
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be a fully invariant ideal of K F. Conversely, suppose I is a fully invariant
ideal of KF and prove that it is closed, that is I?* = I. Consider first the
regular representation Reg F' = (K F, F) of F and its factor-representation
¢ = (KF/I,F). We will show that the set of all identities of the latter
coincides with I.

Let u(zy,...,2,) € I. Since [ is fully invariant, for any f1,...,fs €
F we have u(f1,...,fr) € I, and so u(f1,..., fn) annihilates the module
KF/I. Hence u(z,,...,z5) is an identity of the representation ¢. On the
other hand, let u(z,,...,z,) be an identity of ¢ = (KF/I,F). Take in
KF/I the element 1 + I; since

0=(1+1Dou(zr,...,zs) = u(z1,...,25)+ 1,

we see that u(z1,...,z,) must belong to I.

In particular, we have ¢ € I®. Let now u € IP*. This means that u is
an identity of the class I?, so it is satisfied in ¢. By the above, u € I. Thus
I=1P~ O

For any variety X of group representations, the ideal X¥* of its identities
is denoted by Id X. By Theorem 0.2.2, the map X — Id X is a bijection
between the varieties of group representations over K and the fully invariant
ideals of K F'. The set of varieties of group representations over K is denoted
by M(K). In view of the preceding remark, the behavior of this set is
controlled by the free group algebra K F.

Examples. 1. The class S of all trivial representations (recall that a
representation p = (V,G) is called trivial if each ¢ € G acts identically on

V) is a variety, for it can be determined by a single identity
yo(z—1)=0.
It is easy to see that the ideal Id S of identities of S is precisely the aug-

mentation ideal A of K F.
2. A representation p = (V,G) is called stable of class n, or simply

n-stable (this terminology goes back to Kaloujnine [38]) if there is a series
of G-modules
0=4,CA C...CA, =V
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such that G acts trivially on every factor A4;41/4;.! A typical example of
an n-stable representation is the representation ut,(K) = (K"®, UT,(K))
where K™ is the free K-module of rank n and UT,(K) is the unitriangular
matrix group of degree n over K acting on K™ in the natural way. The
class S™ of all n-stable representations is a variety because it is determined
by the identity

yo(z; —1)(z2 —1)...(zn —1)=0.

A straightforward verification shows that Id(S™) = A™.

3. A representation is said to be n-unipotent if it satisfies the identity
yo(z-1)"=0.

The variety of all n-unipotent representations is denoted by U,,. Evidently
8™ C Up. On the other hand, suppose that K is a field, then a classical
theorem of Kolchin [42] states that if a finite-dimensional representation
p = (V,G) is unipotent, then it is stable (there is no need to speak here
about the class of stability and the class of unipotency because they both can
be chosen to coincide with dim V). In other words, in the finite-dimensional
case stable representations and unipotent representations are exactly the
same.

The Kolchin Theorem led naturally to the problem of whether every
(not necessarily finite-dimensional) unipotent representation over a field is
stable, i.e. whether U, C SV for some N = N(n). If the ground field K
is of prime characteristic, a negative answer can be obtained immediately.
But for char K = 0 the problem has remained unsolved for about 35 years.

We will return to this question in § 1.6.

4. For any variety of groups © denote by w® the class of all represen-
tations p = (V,G) such that G/Kerp € O. This class is a variety because if
© is determined by a set of group identities {f;}, then w® is determined by
the set {f; —1}. Note that the map © — wO is injective, for if G € O \ O,
then it is clear that RegG = (KG,G) € w0, \ wO,. Thus there exists a

1The word “stable” is overused in today’s mathematics and, probably, is not optimal
here. But this term is already quite common in the field, so we decided not to change it.
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natural embedding of the set of varieties of groups into the set M(K). The
varieties of group representations of the form w® will be sometimes called
the varieties of group type.

It is not hard to identify the ideal Id(w®) of identities of w®. It is
generated, as a right ideal, by all f — 1, where f belongs to the O-verbal
subgroup O(F) of F. Equivalently, Id(w®) is the kernel of the natural
epimorphism K F — K[F/O(F)].

5. This example complements the preceding one and demonstrates
that there is an essential difference between identities of abstract groups and
identities of their representations. Take the special linear group SL,(K) over
a field K of characteristic zero. Since SL3(K) contains free nonabelian sub-
groups, it has no nontrivial group identities. Therefore from the standpoint
of group identities the classical group SL,(K) is not an “interesting” object.
Consider now another classical object: the canonical two-dimensional repre-
sentation sly(K) = (K?,SLy(K)). This representation has many interesting

identities, for example, an elementary verification shows that
(z1 + 27 1)z — z2(21 + 277) 09

is an identity of sly(K).2

A similar phenomenon is valid for other classical matrix groups over
an infinite field: as abstract groups, they usually have no nontrivial identi-
ties, while their canonical representations certainly do (for instance, by the
Amitsur-Levitzki Theorem, every n-dimensional representation satisfies the

so-called standard polynomial identity of degree 2n).

6. Evidently the class O of all representations over K and the class £
of all zero representations are varieties; they are called trivial varieties. The

corresponding fully invariant ideals in K F are {0} and K F respectively.

0.2.3. Proposition. If K is a field, then every proper (i.e. # KF)

fully invariant ideal of KF is contained in the augmentation ideal A,

2Moreover, it was proved in [51] that every identity of sl;(K) is a consequence of

(1).
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Proof. Let I be such an ideal and u(z;,...,z,) = > Aifi(z1, ..., 25)

an element from I. Since I is completely invariant,

u(l,..., 1) = > Nfi(l,..., 1) =Y Nel

If A; # 0, then 1 ¢ I, that is I = KF, which is impossible. Hence
SAi=0,andso I CA. O

Equivalently: Every nonzero (z'.\e. # &) variety of group representa-

tions over a field contains S.

Let X be a variety and p = (V, G) an arbitrary representation. It is easy
to see that if A; (7 € I) are G-submodules of V' such that the corresponding
factor-representations (V/4;, G) belong to X, then (V/ N 4;, G) belongs to
X as well. Therefore there exists the smallest G-submodule 4 of V such that
(V/A,G) € X. This submodule is called the X-verbal of p and is denoted
by X*(p) = X*(V,G).

0.2.4. Lemma. Let X be a variety. Then the following assertions are

valid:
() 17 p =L i, then X*(p) = [1 X*(p)
(i) If p C o, then X*(p) C X*(0o).
(i) If p : p — o is a homomorphism, then X*(p*) = (X*(p))*.

Proof isroutine. For example, let us prove the last assertion. Recall
that two representations are said to be equivalent (see Section 0.1) if their
faithful images are isomorphic. It is evident that every representation has
the same identities as its faithful image, and therefore if a representation ¢
belongs to a variety X, then all representations equivalent to ¢ belong to X
as well.

Now let p = (V,G), ¢ = (W, H), and let p: p — ¢ be an epimorphism.
Denote X*(p) = A and X*(¢) = B. We will show that A* = B. Note first

that the epimorphism g induces an epimorphism of factor-representations

(V/A,G) = (W/A*, H).
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Since (V/A,G) € X and since every variety is closed under taking epimor-
phic images, we have (W/A#* H) € X, whence A* D B. On the other hand,

the representations
(V/B*"',G) and (W/B,H)

are certainly equivalent, and by the previous remark (V/B“_I,G’) € X.
Hence A C B*™' and A* C B. O

FREE REPRESENTATIONS. Given two non-empty sets X and Y, take
the free group Fx on X and the free K Fx-module &y = ®y€Y yKFyx,
having the set Y as a basis. The corresponding representation ¢ = (®y, Fx)
is called the (absolutely) free representation on a pair of sets {Y,X}. This
terminology is justified by the following obvious observation: if p = (V,G)
is any representation, then an arbitrary pair of maps X - GandY -V
can be uniquely extended to a homomorphism from ¢ to p. Thus ¢ is a
free object in the category REP-K. Note, in particular, that the regular
representation Reg Fx = (KFx,Fx) is free. It is called the cyclic free
representation on the set X.

Now let X be a variety and let Fy = &y /X*(¢). There naturally arises
a representation (Ey, Fx) called the free representation of the variety X on
{Y, X}. This terminology is also natural because (Ey, Fx) is a free object
of the variety X regarded as a category.

The rank of the representation (Ey, Fx) is the pair of cardinalities |Y|
and |X|. If |Y| = 1, then (Ey, Fx) is called the free cyclic representation
of rank |X| in X. The most important is the free cyclic representation of
countable rank in X which is denoted by FrX'. According to the above,
it is constructed as follows. Take the free group of countable rank F' and
its regular representation Reg F = (K F, F), then FrX is just the factor-
representation

(KF/X*(Reg F), F).

Similarly, the free cyclic representation of a finite rank n in X is isomorphic
to

(KFn/X*(Reg Fn)a Fn)a

F, being the free group of rank n. This representation is denoted by Fr,X.
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0.2.5. Proposition. X*(Reg F') = Id X for every variety X. There-
fore
FrX = (KF/ld X, F).

Proof. Denote X*(RegF) = A,Id X = I. It is evident that (KF/I,
F) ¢ X whence A C I. Now let u(z;,...,2,) € I. Since (KF/A,F) ¢ X,
¢ is an identity of this representation. Therefore for the element 1 = 14+ A4 €
KF/A we have

0=Tou(z1,...,2n) = u(a1,...,2n) + 4,
so that u(z;,...,z,) € 4. O

Example. To illustrate the above notions, we describe the free cyclic
representation Fr(w®) of the variety w®, © being any variety of groups.
By the preceding statement, Fr(w®) = (K F/Id(w®), F). Denote by H the
O-verbal subgroup of F, then F/H = F(0) is the free group of countable
rank of ©. It was earlier noted that Id(w®) coincides with the kernel of the
canonical epimorphism KF — K[F(©)], and so

Fr(w®) = (K[F(O)], F)
where F acts on K[F(O)] by the natural rule

Qo X(fH)) o f =D N(fifH).

Further, the kernel of Fr(w®) coincides with H, whence the faithful image

of this representation is precisely the regular representation of F(©):
Fi(wO@) = Reg F(0) = (K[F(0)], F(0)).

VARIETIES AND CLOSURE OPERATIONS. Since the intersection of any
set of varieties is a variety, one can speak of the variety generated by an
arbitrary class X of representations. This variety is denoted by varX. For
example, it is clear that every variety X is generated by its free cyclic

representation of countable rank:

X = var {Fr X}.
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0.2.6. Lemma. If X is a class of representations, then all free repre-
sentations of var K belong to the class VSCK.

Proof. Denote X = varK and I = Id X. We will prove, for instance,
that Fr X = (KF/I, F) ¢ VSCK. Take the absolutely free representation
Reg F = (K F,F) and let p,, o € M, be all possible homomorphisms from
Reg F' to K-representations. For each a € M denote the kernels of po
in KF and in F by A, and G, respectively. Then the representation
(KF/Aqy, F/Gq) is isomorphically embedded in some representation from
K. Let A =NA, and G = NG,. Using the Remak Theorem, we conclude
that

(KF/A, F/G) € SCK

whence (K F/A, F) € VSCK. It remains to show that 4 = I.

Since (KF/A,F) € X, we have I C A. To prove the reverse inclusion,
take v = u(z1,...,z,) € A. Since X = var K, the ideal I consists of all
identities of the class X, so that it is enough to show that u is an identity

of any representation p = (B, H) from K. Assume the contrary:
e B, hi,...,hn € H: bou(hy,...,hn) #0.

Consider the homomorphism g : (KF,F) — (B,H) defined as follows:
1# = b where 1 is the unit of KF; 2! = h; (1 = 1,...,n) and z{ = z;
for ¢ > n. Since A is the intersection of the “left” kernels of all such

homomorphisms and v € A, we have u# = 0. But
ut=Qou) =bou(hy,...,hy) #0.
This contradiction shows that y € I. O

It is now easy to prove an analogue of the classical Birkhoff Theorem
[7] giving a characterization of varieties in terms of closure operations on

classes of representations.

0.2.7. Theorem. A class of group representations is a variety if and

only if it is closed with respect to the operations V, Q, S, C.
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Proof. Evidently every variety is closed with respect to these opera-
tions. Conversely, suppose X = VX = QX = SX = CX. By 0.2.6, all free
representations of var X are contained in VSCX = X. Since every repre-
sentation from var X' is an epimorphic image of some free representation of
var X, it follows that var X = X. O

Using this theorem and easily verified relations between closure opera-
tions (e.g. QV <VQ, SQ < QS, etc.), we obtain:

0.2.8. Corollary. varX = VQSCK for any class K. O

Note. Since group representations are two-sorted algebraic structures,
one should not be surprised when some statements on varieties of group
representations do not repeat literally the well known properties of varieties
of “usual” algebras. For example, the statement of Theorem 0.2.7 differs
from that of the Birkhoff Theorem (the former contains an additional re-
quirement of V-closedness). However, it is easy to understand that this
difference is immaterial. Indeed, if we consider any class of group repre-
sentations A and the corresponding class VX, then from the standpoint of
identities there is no difference between X and VX at all: both classes have
the same identities. (In particular, this shows that every variety of group

representations simply must be V-closed).

0.3. Certain properties of varieties.

THE ALGEBRA OF VARIETIES. For arbitrary varieties X and ) their
product XY is the class of all representations p = (V, @) such that V has
a G-submodule A4 with (4,G) € X and (V/A4,G) € Y. A straightforward

verification shows that X') is also a variety and
d(xY)=1dY - Ildx.

Therefore under this multiplication the set M(K) of varieties of group rep-

resentations over a given K forms a semigroup which is anti-isomorphic to
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the semigroup of fully invariant ideals of K F. The varieties O and £ are
respectively 0 and 1 of the semigroup M(K).

For arbitrary varieties X and Y their join X VY and meet X A )Y are
defined in the standard way:

AVY=var(XU)), XAY=an)y.

The set of varieties of group representations over a given K is a complete

lattice under the operations V and A. Since
Id(XVY)=1dX N 1dY, (X AY)=1dX + 1dY,

this lattice is dual to the lattice of completely invariant ideals of K F'.

Now let X be a variety of representations, and @ a variety of groups.
Denote by &' x O the class of all representations (V, G) such that G has a
normal subgroup H with (V,H) € X and G/H € 0. lt is easy to show (for
instance, using 0.2.7) that X x © is a variety of group representations. In
particular, the variety w® can now be redefined as w® = S x O, where S is
the variety of trivial representations.

Recall that the product ©,0; of two varieties of groups @, and O,
is the class of all groups G having a normal subgroup 4 with 4 € 0,
and G/A € O,. It is known that ©,0, is a variety of groups and that this
multiplication is associative, so one can speak of the semigroup of varieties of
groups. The reader interested in the structure of this semigroup, is referred
to Chapter 2 of [68].

A direct verification shows that
(XY)x O =(Xx0)Yx0), (¥*x0;)x0,;=2X x(0,0,),

where X and )Y are varieties of representations, ®, and ©, are varieties
of groups. In other words, x is an action of the semigroup of varieties of

groups on the semigroup of varieties of group representations.

FINITELY BASED AND SPECHT VARIETIES. A variety is said to be
finitely based if it can be determined by a finite set of identities. A variety X
is said to be Specht if all its subvarieties (including X') are finitely based. One
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can easily show that a variety is Specht if and only if it is finitely based and
satisfies the descending chain condition on subvarieties. Indeed, a variety X
is Specht if and only if all verbal overideals of Id X in K F (including Id X)
are finitely generated as fully invariant ideals. By a standard Noetherian-
type argument, this is equivalent to the ascending chain conditions on these
overideals which, in turn, is equivalent to the descending chain condition on

subvarieties of X.

0.3.1. Proposition. If X and Y are finitely based, then XY is also
finitely based. Therefore finitely based varieties form a subsemigroup in

M(K).

Proof. Let IdX =1, IdY = J. Since X and ) are finitely based, I
and J are finitely generated as fully invariant ideals of K F'. For any subset
M of K F denote by Id(M) the fully invariant ideal of K F' generated by M.
Then, without loss of generality, we may assume that I = Id(v), J = Id(u)
for some u,v € K F and, moreover, that the set of free generators z; ocurring
in v does not intersect with the analogous set for v. We will prove that
JI =1d(uv).

Let v = u(z1,...3Zm), ¥ = ¥(Tmt1y+++»Tmin). Every element from

JI is a K-linear combination of elements

au(fiy..., fm)bv(g1,...,9n)c, where a,b,c, fi,g;: € F.

Since u(f1,...,fm)b = bu(fL,..., fb) where f! = b~ f;b, every element

from JI is a K-linear combination of elements of the form

au(fi,..., fm)v(g1,...19n)c, where a,c, fi,g; € F.

But it is evident that these elements belong to Id(uv). Therefore JI =
Id(uv) and, since JI = Id(XY), XY is finitely based. O

The following question is still unanswered.

0.3.2. Problem. Is the product of two Specht varieties of group

representations also a Specht vartety?
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It is unlikely that the answer here is positive (even over a field), al-

though we do not have any definite arguments.

0.3.3. Proposition. A variety w0 is finitely based if and only if © is
a finitely based variety of groups.

Proof. Let © be determined by identities f; = 1, ¢ € I, then wO is
determined by the identities f; — 1, ¢ € I. Therefore if O is finitely based,
so is w®. Conversely, let wO be finitely based. This means that I = Id(w©)
can be generated, as a verbal ideal, by a finite set of elements u;,...,um.
On the other hand, I is generated, as a verbal ideal, by the elements f; —1.
Therefore each uy is a finite sum of elements of the form a(f; —1)¥b, where
a,b € KF, p € End F. Hence I is generated, as a verbal ideal, by a finite
number of the f; — 1, say by f; —1,...,frs — 1. But then it is easy to
see that © is determined by the identities f; = 1,...,f, = 1. Indeed,
if they are satisfied in some group G, then Regp G satisfies the identities
fi—1,...,fn — 1. Hence RegxG € wO and, since this representation is
faithful, G € ©. O

In particular, Proposition 0.3.3 guarantees that over an arbitrary K
there exist varieties of group representations which are not finitely based

(because non-finitely based varieties of groups do exist [70], [1], [88]).

THE AXIOMATIC RANK AND THE BASIC RANK. As usual, F and F, are
free groups of countable rank and of a finite rank n respectively. Consider

two absolutely free representations
Reg F = (KF,F) and RegF, =(KF,,F,),

and let us suppose that Reg F,, is naturally embedded in Reg F. Take an
arbitrary variety X and let I = X*(Reg F') = Id X be the X-verbal ideal of
KF,but I, = X*(Reg F,,) the corresponding ideal of K F,,. The elements
of I, are called the identities in n variables of X. Recall (see page 11) that

FrX = (KF/I, F) and FroX = (KFu/I,, Fy)
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are the free cyclic representations in X of countable rank and of rank n
respectively.
The next three lemmas are straightforward. We will prove only the

first of them, leaving the remaining ones to the reader.
0.3.4. Lemma. I, =INKF,.

Proof.By0.2.4 (ii), X*(Reg F») C X*(Reg F), whence I, C INKF,.
On the other hand, consider the epimorphism p : Reg FF — Reg F), defined
by the rule

2 =1 if 1> n.
Then INKF, =(INKF,)* CI* and, by 0.2.4 (i),

I* = (X*(Reg F,))* = X*(Reg Fy,) = I,.
Therefore INKF,, CI,. O

0.3.5. Lemma. A representation of an n-generated group belongs to
X tf and only if this representation satisfies the identities tn n variables of
X. O

For any variety X and any positive integer n, the variety determined
by the identities in n variables of X' is denoted by x(,

0.3.6. Lemma. X™ consists of all representations (V,G) such that
tf H is an arbitrary n-generated subgroup of G, then (V,H) ¢ X. O

Thus, for every variety X we have a descending chain of overvarieties

oo
X(I)Q/'V(Z)2___2X(")2...2X=nx(n). (1)
n=1

If there exists n such that X = X("), then the first n with this property is
called the aziomatic rank of X and is denoted by r,(X). Otherwise X is

called a variety of infinite axiomatic rank.
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On the other hand, if we denote X(,) = var (Fr, '), then there arises

an ascending chain of varieties
X CX@ S CXm S CX =\ X(n). (2)

If X = X(y) for some n, then the first such n is called the basis rank of X
and is denoted by ry(X). If X(,) < X for every n, we say that ry(X) = oo.

Examples. 1. Let © be a variety of groups which cannot be deter-
mined by identities in a finite number of variables (such varieties were first
constructed by Vaughan-Lee [88]). Then r,(w®) = oo.

2. Let K be a field of characteristic p, and let 4, be the variety of
abelian groups of exponent p. It is easy to show that the variety wA, is
not stable, while every finitely generated representation from w4, is stable.
Hence w.A, cannot be generated by a finitely generated representation, and
so rp(wAp) = oo.

3. Let K be a field of characteristic 0, A the variety of all abelian
groups and X an arbitrary subvariety of w.A. Then ro(X) =1 [49].

4. Evidently r,(S) = r4(S) = 1. More generally, it will be proved in
§1.1 that if a variety X is n-stable, then ro(X) < n and rp(X) < n.

0.4. Changing the ground ring

Recall that M(K') denotes the set of varieties of group representations
over K. According to the previous section, M(K) is a semigroup under the
multiplication of varieties.

Let K be a commutative ring with 1 and let R be its subring (with
1). In the present section, our objective is to describe certain connections,
discovered by Plotkin [78], between varieties of group representations over

K and over R. Consider two maps
v: M(R) —» M(K) and ': M(K) — M(R)

defined as follows. If X is a variety of representations over R, then X'” is the

class of all representations over K which, regarded as representations over R,
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belong to X. Clearly X" is a variety of representations over K (for example,
by Theorem 0.2.7). Conversely, let ) be a variety of representations over
K. Consider Y as a class of representations over R and set y"' = varg).

It follows from the definitions that X** C X and Y*'* 2 Y for each
X € M(R) and Y € M(K). In general, these inclusions are strict.

Examples. 1. Let R = Z and K = Q, and let A be the variety over Z
defined by the identity n(z — 1) with n > 1. Then the inclusion X" cx
is strict. Indeed, X consists of all representations p = (V,G) over Z where
V has a G-submodule A such that A is an abelian group of exponent n and
G acts trivially on V/A. From the definition of v, it follows that X” is the
variety of trivial representations over Q, whence X" = S. But it is clear
that X # S.

2. Examples showing that the inclusion y""’ 2 Vs, in general, strict
are less elementary and will be given later. However, this fact can be im-
mediately deduced from general considerations. Namely, let K be a field
whose cardinality is greater than the continuum ¢, and let R be a countable
subfield. It is known that |M(R)| = ¢, while |M(K)| = |K| > ¢ (see [79] or
[80, Theorem 2.5.1]). Therefore the map +' is not injective and, a fortiori,
the equality Y¥'v = Y is false for some Y € M(K).

It is not hard to understand how the ideals of identities of X¥ and
b depend on those of X and Y. Indeed, suppose that RF is naturally
contained in KF and let ] =1d X and J = 1dY. Denote by KI the ideal
of KF generated by I. Then a direct verification shows that

Id(X*)=KI and 1d(¥")=JNRF.
In particular, since K(I1I;) = (KI,)(K 1), we obtain:

0.4.1. Proposition. The map v : M(R) — M(K) is a homomorphism

of semigroups. [

0.4.2. Proposition. If R and K are fields, then X =x for every

X € M(R). In particular, v is a monomorphism.
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Proof. To establish the nontrivial part, take an arbitrary representa-
tion p = (V,G) from X. Consider the vector K-space Vk = K ®r V. The
group G acts on Vi by the rule (A® v) o g = A(v o g), so that there arises a
representation px = (Vi,G). It is clear that pk, as a representation over
R, belongs to &'. Therefore as a K-representation it belongs to X”. But p
is a R-subrepresentation of pk, and so p € X", Hence X - x. 0

The remaining results of this section show that in certain cases the
investigation of varieties over a given field K can be “localized”. More ex-
actly, one can reduce it to studying varieties over finitely generated subrings
of K, and thereafter to studying varieties over certain finite fields.

Let K be a commutative ring with identity and let {R;|7 € I} be the
system of all finitely generated subrings of K. For every 7 € I the embedding
R; C K determines the maps

v: M(R,’) — M(K) and v M(K) — M(R,‘)

which will be denoted below by v; and v} respectively. If now ) is a variety
of group representations over K, then we set y"i = X;. In other words,
X; is a variety of group representations over R; which is generated by the
class Y regarded as a class of R;-representations. Furthermore, let us agree
that if p is a representation over K, then the symbol pg, means that p is

regarded as a representation over R;.

0.4.3. Lemma. A representation p over K belongs to Y if and only
if pr; € X; for every it € I. This representation generates Y if and only if
PR, generates X; for everyi € I.

Proof.If p € Y, then pg;, € X;. Conversely, suppose that pp, € X; for
every ¢ € I, and prove that p € Y. Let u € KF be an arbitrary identity of
Y. Then u € R;F for some R;, so that u is an identity of the corresponding
&;. Since pg, € X, it follows that u is an identity of pg,, as required.

We prove now the second assertion of the lemma. Let p generate Y

over K: vargp = ). Then

X; = varg,Y = varg;(varkp) = varg,(pr, )
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Conversely, suppose that varg,(pr,) = X; for every ¢ € I. Then, in view of
the above, p € Y, and it remains to show that every identity v of p is an
identity of the variety Y. Choose a finitely generated subring R; of K such
that v € R;F, then v is an identity of pr, and so it is an identity of A';.
Since Y C X; (over R;!), v is an identity of ) as well. O

0.4.4. Lemma. r()) <n<Viel: r(X;) <n.

Proof. Let J = Id,)Y be the ideal of identities of J in KF,,. If
rs(Y) < n, then ) is generated by the representation Fr,Y = (K F,,/J, F,).
By the previous lemma, X; is generated by (Fr,))r,, whence ry(X;) < n.

Conversely, let r4(X;) < n for every i. Considering R;F and J as

R;-submodules of K F,,, we have an isomorphism of R;-modules

(RiF, +J)/J =~ R;F,,/(J N R F,). (1)
Since J N R; F,, is the ideal of identities of X; in R;F,, we have

Fr,X; = (R:F,/(J N R Fy,), Fy). (2)

By assumption, X; is generated by Fr,X';. It follows from (1) and (2) that
Fr,X; is a R;-subrepresentation of Fr,). Therefore &'; is generated by
(FrnY)r; as well. Since this is valid for arbitrary : € I, it follows from
Lemma 0.4.3 that Fr,,) generates Y. O

Let A be a module over a commutative ring R with 1. If k = R/AnngA
is a field, A can also be regarded as a vector space over k. In this case we
will say that A is an R-module over the field k. In a similar sense we speak of
an R-representation over the field k. Using this terminology and notation,

we can now prove the following statement.

0.4.5. Proposition. Let K be a field of characteristic zero, R a
finitely generated subring of K, and v' : M(K) — M(R) the corresponding
map on varieties. If a variety ) over K is generated by finite-diminsional
representations, then for any infinite set ™ of primes the variety y”' over
R can be generated by finite-dimensional R-representations over finite fields

whose characteristics belong to .
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Proof. The variety ) is generated by finite-dimensional representa-
tions of finitely generated groups. Let p = (V, G) be such a representation.
Choose a basis e;,...,¢e, of V and let ¢1,...,9m be a finite generating set

of G closed under taking inverse elements. If

e;0g; = E Aijkek

then denote by R; the subring of K generated by R and all the A;j;. Let
A be the R;-submodule of V spanned by e;,...,e,. Clearly A is a free
R,-module of rank n, invariant under G.

Let w be an infinite set of primes. Being a finitely generated subring of
a field of characteristic zero, R, can be approximated by finite fields whose
characteristics belong to 7 (see for example [103, Lemma 10.2]). In other
words, there is a set of ideals {a;} of R; such that (a; = 0 and each R, /q; is
a finite field whose characteristic belongs to . For each ¢ the R;-submodule
a;A of A isinvariant under G, the factor A/a; 4 is a finite-dimensional vector
space over R, /a;, and [(a;A = 0.

Now let us consider A as an R-module. Since R;/a; is a finite field,
it follows that R/Anng(A/a;A) is also a finite field of the same char-
acteristic. Thus, the R-representation ¢ = (A4,G) is approximated by
finite-dimensional representations over finite fields whose characteristics be-
long to 7. Therefore o is contained in the variety generated by all these
finite-dimensional representations. Since p = (V,G) is the “K-envelope” of
o = (A,G), it is easy to see that pr and o generate the same variety over
R. Tt remains to note that y”' is generated by all possible pr, p being as
above. O

0.5. The free group algebra

In the present section we describe several basic properties of the free
group algebra K F which will be necessary in what follows. Our presentation
is based on the embedding of K F into the algebra of formal power series,
going back to Magnus [57], and on the free differential calculus of Fox [17].

All the material of this section is classical and can be found in many sources;
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apart from the original papers [57] and [17], one can mention the books [286,
60, 80, 27].

THE FOX DERIVATIONS. As usual, let F' be the absolutely free group of
countable rank on the alphabet X = {#;,%2,...} and let K be an arbitrary
commutative ring with 1. Take the group algebra KF and let ¢ : KF — K
be the augmentation map. For any v = u(z,...,2,) € KF, the scalar
u® = u(l,...,1) will be briefly denoted by u(1). A map D: KF — KFis
called a (left) derivation if it is K-linear and

D(uv) = Du-v(1) + v Dv (1)
far all u,v € KF. It is easy to see that every derivation D has the following
properties:

DA=0 (A€ K), (2)
Df~'=—f7'Df (feF), 3)

k
D(uyuz...ug) = Zul ceettimy - Dugougg (1) ug(1) (vi € KF). (4)

For each positive integer ¢ consider the map 9; : X — KF defined by
the rule 0;z; = é;;, where §;; is the Kronecker symbol. This map can be
extended to F' by (2)-(4) and then to K F by linearity. A straightforward
verification shows that the resulting map 9; : KF — KF is uniquely deter-
mined and is a derivation. It is called the i{-th Foz derivation and is also
denoted by D; or 8%'_. Evidently, if z; is not involved in u, then G;u = 0.

The set Der KF of all derivations on KF can be regarded as a right
K F-module, if one defines the K F-linear operations on Der K F' by

(D1 + D2)u = Dyu + Dyu and (D - v)u = (Du)v.

The structure of this module is rather transparent and depends heavily on

the Fox derivations 9;.

0.5.1. Proposition. For every sequence wy,wz,...,Wn,... of ele-
ments from KF there exists one and only one derivation D on KF such
that Dx; = w;; it is defined by

Du = Z O;u - w;. (5)
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Proof. Since d;u = 0 for all but a finite number of indices z, this sum
is finite. Further, since Der KF is a K F-module, the map D defined by
(5) is a derivation taking z; to w; (z = 1,2,...). Suppose D' is another
derivation such that D'z; = w;, then D — D' is a derivation taking z; to
0. By (2)—(4), this implies that (D — D")u = 0 for every u € KF, whence
D=D.0O

The following simple but significant fact is commonly known as the Foz

fundamental formula.
0.5.2. Proposition. For everyu €¢ KF

u=u(l)+ Za,-u Sz —1). (6)

Proof. It is easy to verify that the map u — u — u(1) is a derivation
of K F taking z; to ; — 1. By Proposition 0.5.1, it follows that

u—u(l):Za,-u-(z,-—l). a

THE FOX DERIVATIONS OF HIGHER DEGREES. For arbitrary positive
integers ,,%2,...,1, define the map J;,...;;, : KF — KF inductively:

O int = 03, (G5, _ iy v

Such maps are called the Foz derivations of higher degrees; clearly they all
are K-linear.

0.5.3. Proposition. For every u € KF and every n > 0 the following

“Taylor formula with residue” is valid:

u=u(l) + Z(ailu(l))(zil — 1)+ ) (Gniu())(en — (@, —1)+...

12,21

+ > Biaorin Q) (@i, — 1) (i, — 1)+ (7)

Ty —1ysssy¥1

+ Y (Bipeinv)(in — 1) .. (2s, — 1)

tnyeenyiy
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Proof. Applying (6) repeatedly to 9, u, 8;,i,4u,..., we obtain
8iu =8, u(1) + > (Bi,u)(=i — 1),
Oiiyu = 955,u(1) +12:(aii,ilu)(zi -1),
and so on. Therefore
u=u(l)+ > (8 u)(zi, — 1)
=u(1) + Z[a,-lu(n + Z(@;,;lu)(z;, — 1) (z;, — 1)
= u(1) + Z(auu(l))(z“ — 1)+ Y (i u)(ziy ~ 1)(2i, —1)

3,41

=... . O

Thus, the basic formulas of the Fox differential calculus have been ob-
tained. Using these formulas, let us prove now several statements on the

augmentation ideal A and its powers.
0.5.4. Proposition. An element u € KF belongs to A™ if and only
if
u(l) = 8,u(1) = Giyi,u(l) = - = iy u(l) = 0

for arbitrary indices 1y,13,... .
Proof. If the condition is satisfied, then (7) implies

U= (Fipir)(®i, —1)... (23, — 1)

whence u € A™. Conversely, if u € A", then u is a sum of elements of the
form v;v; ... v, where v; € A. Hence u(1) = 0 and, applying induction on

m and (4), one can directly calculate that
G;,..,u(1)=0 for m<n-1,

as required. O
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Let f = z{'z;?...z;} (¢i = £1) be an element from F, written in the
irreducible form. The length k of f is denoted by I(f). fu =) X f; € KF,
where A; € K and f; € F, then the length [(u) is defined as

l(u) = max(f;).
By definition, we let I(A) =0 for A € K.
0.5.5. Lemma. 0#u¢& A™ = Il(u) >n/2.

Proof. Induction on n. For n = 1,2 the assertion is obvious. Let
n > 3 and suppose u is an element of A™ such that ! = I(u) < n/2. Each

monomial of u ends with some z; or z; ! therefore

u= Z(v(i)zj + w(i)zj—l)

2

where I(v{)) < I and l(w?) < I. Since 8; does not enlarge the length of

words and 3,’2:]-_1 = —z;!, we have

i
dju = o) — g3

where a9 ¢ KF, () < I. Therefore

l(8;u) <l for @ #7j. (8)

Further, (8;u)z; = aPz; — w) and so

1(95((8u)=;)) <. (9)

Since u € A", it follows from Proposition 0.5.4 that 9;u € A™~! and
8;ju € A™ % for every ¢ and j. The first inclusion implies that (8;u)z; €
A™ ! and so, again by 0.5.4, 8;((8;u)z;) € A"~2. By induction hypothesis,

n—2 n—2

and 0;((B5w)2)) 2 75

1(Giu) > (10)

(or the corresponding elements are zeroes!). It follows from (8) and (10)
that I — 1 > (n/2) — 1, that is, | > n/2, which contradicts the assumption.
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The same contradiction follows from (9) and (10). Thus it is mandatory
that
G;u=0 for 7+#7; 8;((8ju)z;) = 0. (11)

The last equality can be rewritten as 0 = 0;((9;u)z;) = 9;;u + 0;u, whence
0;ju = —0;u. (12)
Now, using 0.5.2, 0.5.4, (11) and (12), for arbitrary j we have

dju = d;u(l) + Y Byu-(z:i —1) = —Bu-(z; — 1)

and so dju = 0. Consequently,

u=u(1)+23ju-(zj—1)=0. a

2

0.5.6. Corollary (Magnus [57]). For arbitrary K the augmentation
ideal of KF is residually nilpotent, that is, (\or, A" =0. O

0.5.7. Corollary. If u(1) = v(1), 8;u(1) = 9;v(1), &;u(1) = ;;v(1),

..., then u = v.

Proof.If w =u — v, then w(1) = Giw(l) = --- = 0. By Proposition
0.5.4,w € (A" =0,s0 that u =». O

THE MAGNUS EMBEDDING. For arbitrary v € K F, the formal decom-

position of u in the Taylor series is the expression

v=1u(l)+ Z(a,-u(l))(:c,- -1+ Z(a,-ju(l))(:c,- —1)(z;—-1)+...

(13)
+ 3B inu(D)(mi — (=i, 1)+ ... .

In particular, one can easily calculate the formal Taylor series for z; and

71

z;

z; =1+ (z; —1),

el =1—(zi — 1)+ (zi =1 —(z:i —1)* +... . (14)
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By 0.5.7, every v € KF is uniquely determined by its Taylor se-
ries. This observation has important consequences. Namely, let K{{Z)) =
K{(z1,22,...)) be the K-algebra of formal power series in countably many
noncommutative indeterminates z;,z2;,... . Each element of K{{Z)) is a

series of the form
w = W(g) +w(1)+ ---+w(n)+...

where w(,), the homogeneous component of degree n, is a finite sum of
monomials Az;, 2y, ... 2;, (A € K). Now, using (13), defineamap p: K F —
K ((Z)) as follows:

ut = u(l) + Z(aiu(].))Zi + Z(aiju(l))zizj +...
D Bn i)z 2oy

Corollary 0.5.7 guarantees that p is injective. Moreover, a straightforward

(15)

verification shows that p is a homomorphism of K-algebras. Taking this
into account, from now on we will identify K F with its image (KF)* in

K{(Z)). In particular, we can now write
z;=14+2; or z;==z;—1,

but the formula (14) acquires the following shape:

gl =1+ -2 +.... (16)

In other words, if we denote by z; the element 1 + z; of K{{(Z)), the K-
subalgebra of K{{(Z)) generated by all the z; and ;! is isomorphic to K F,

z;’s being free generators of F.

Note. The above embedding of K F into the algebra of formal power
series was in essence discovered by Magnus [57]. It should not be confused
with another Magnus embedding giving a faithful representation of certain

abelian extensions F/R' by 2 x 2 matrices of a special form [59].

Denote by Q the set of all series without a constant term, that is, the
set of all

u=u@)tug)+e-+Hum+... € K{(Z))
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such that u(g)y = 0. Clearly Q is an ideal of K((Z)), and so is Q™ for each n.
Since K F is a subalgebra of K({Z)), the intersection Q" N K F is an ideal
of KF.

0.5.8. Proposition. Q"N KF = A",

Proof.If u € A, then u(1) = 0, and it follows from (15) that A C Q.
Therefore A™ C Q™ N K F. Conversely, let v € @Q* N KF. By (7),

v=un)+upg +oF Unony + u(™
where u(;) (i < n) is a homogeneous element of degree 7 and
u(™ = Z(a,'l,,,;")z;l Loz, €A™

Therefore u;y + -+ -+ un_y) = u— u(®) € Q", whence U(Q) =0 = U(goy) =
0. Thus u = u(® € A™. O

0.5.9. Corollary. For arbitrary n
(1) A™ is a free (right) KF-module;
(ii) A™/A™ s a free K-module.

Proof. It follows from the above that all the possible monomials
2, ...z, of degree n form a K F-basis for A™ and a K-basis for A™ over

A"+1. O

TwO TECHNICAL RESULTS. Concluding this section, we will prove two
assertions similar to well known group-theoretic results of Higman [36] and
Powell [82] (see also [68, 33.37 and 33.43]).

Let G = []" Gi be the free product of an at most countable family of
groups G;,G,,... . Denote by 8; the endomorphism of G taking G; to 1
and acting identically on each G; with j # ¢. It can be naturally extended
to an endomorphism of the regular representation Reg G = (KG,G) which
will be denoted by the same symbol 6;. An element 0 # m € KG is said
to be a monomial of degree n, if m = (g1 —1)(g2 — 1)...(gn — 1) where
1 # g; € Gr(i)- The set Supp m = {A(1),...,A(n)} is called the support of

m.
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Take the endomorphism 6; of (KG,G) and let A; be its kernel in KG.
Then A; is contained in the augmentation ideal A of KG. For a finite
nonempty set I of natural numbers, denote Ay = niel A;. Furthermore, let
A@ = A.

0.5.10. Lemma. Any element from Ay is a K-linear combination of

monomials whose supports contain I.

Proof. We proceed by induction on |I|. For I = { there is nothing to
prove. Suppose the lemma has been already proved for |I| = n — 1, and let
I={i,...ytn-1,2}. fu € A, then u € Ap where I' = {i1,...,in_1}. By
induction hypothesis, u = 25':1 aj;m;, where a; € K and m; are monomials
such that I' C Supp m; for every j. Without loss of generality, we may

assume that for some r

1 € Supp m; if j=1,...,7;
7 ¢ Supp m; if j=r4+1,...,s.

Apply now 6; to the equality

r ]
U= E a;m; + E a;m;.
i

r+1

Since uf; = 0, and since for any monomial m we have m§; = 0 if : ¢
Supp m, and m#; = m otherwise, it follows that z:+1 ajm; = 0. Therefore
u = Y] a;m; and, since i € Supp m; for every j = 1,...,r, the proof is

completed. O
Let w € KG. Since 67 = 6;, we have
w(l —6;)0; =0, thatis, w(l-—6;)c A;. (17)

Evidently, every A; is invariant under every ;. Therefore it follows from
(17) that w(1 — 6;)(1 —8;) € A; N A;, whence by induction

w(l — 9,’1 )(1 — 9,’2) . (1 — 9,',.) [ A{il,iz,---,in}' (18)
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On the other hand, expanding the left side of this formula, we obtain

w(l=06;)(1—6;,)...(1—0:,) =w+ > (-1)"wb;,...0;, (19)

where the sum is taken over all subsequences ji,...,Jr of the sequence

1y+++sin. Thus, combining (18) and (19), we have:

0.5.11. Lemma. Let w = w(z,...,z,) € KG, where G = [[*G;.

Then for arbitrary n the element w can be written in the form
w=u4+v +---+ v

where u € Agy 3 ... n) and each v; has the form v; = twb;, ... 0; (r 21,1 <
n<---<j,<n). 0O

In the particular case G = F, Lemmas 0.5.10 and 0.5.11 imply:
0.5.12. Corollary. If w € KF, then for arbitrary n
w=u+vy+ -+ v

where v € A™ and each v; has the form v; = twl;, ...0; (r 21, 1< 1 <
e <j3r<n). O

It is not hard to see that the last assertion can be also deduced from

Proposition 0.5.3.



Chapter 1

STABLE VARIETIES AND HOMOGENEITY

Recall that a variety of group representations is said to be stable of

class n (n-stable) if it satisfies the identity
yo(z; —1)(zz —1)...(zn —=1)=0

or, in other words, if it is a subvariety of S". In the present section we are

concerned with some aspects of the theory of stable varieties.

Section 1.1 deals with “finiteness properties” of such varieties. In par-
ticular, it is proved that every stable variety has a finite basis of identities
(provided the ground ring is noetherian), a finite axiomatic rank and a finite

basis rank.

In the remaining part of the chapter the ground ring K is a field (al-
though this restriction sometimes is superfluous). In §1.2-1.5 our consid-
erations are essentially based on the idea of homogeneity. First of all, the
Magnus embedding of K F into the algebra of formal power series makes it
possible to introduce, in a natural manner, the notion of a homogeneous va-
riety of group representations. This notion leads to a number of interesting
questions; furthermore, it turns out to be useful in studying stable varieties.
One of the main results of the chapter (Theorem 1.3.1) states that if K is
a field of characteristic zero, then there exists a canonical one-to-one cor-
respondence between the so-called homogeneous Magnus varieties of group
representations over K and all varieties of (associative) algebras over K.
This theorem enables us to apply the deeply elaborated theory of varieties
of algebras to the study of varieties of group representations. In particular,
we will see that there exists a canonical bijection between homogeneous n-

stable varieties of representations and all n-nilpotent varieties of algebras.

33
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One application of this observation is given in § 1.4 where, following a paper
of Grinberg [23], we describe all 4-stable varieties of representations over a
field of characteristic zero.

On the other hand, non-homogeneous stable varieties do exist (Theorem
1.5.1), and so (fortunately!) stable varieties of group representations can
not be reduced to nilpotent varieties of algebras.

In §1.6, using a recent theorem of Zel’manov [105] on the nilpotency
of Lie algebras with the Engel condition, we prove that every unipotent
representation over a field of characteristic zero is stable. In other words, in
characteristic zero the identity (z — 1)” implies the identity (z; — 1)(z; —
1)...(zn — 1) for some N = N(n). This result will be used essentially in
the next chapter.

1.1. Finiteness properties

We begin with one simple but useful assertion which is valid over an

arbitrary ground ring K.

1.1.1. Proposition. The identities of any stable variety of class n

follow from (zy — 1)...(zn — 1) and tdentities in n — 1 variables.

Proof. Let X be an n-stable variety and I = IdX. By 0.5.3, an

arbitrary u € I can be written in the form

u=A+ Z Aizi + ZA,-J-Z;ZJ- +..- 4+ ZA;I,,_in_lz,-l ez, tw

where A, A, Aij, -+ € K, 2z; = ¢; — 1, w € A™ and all sums are finite.
Since A™ C I, we have u — w € I. Here v — w is a polynomial of degree
at most n — 1 in variables z; and can be uniquely presented as a sum of
normal polynomials (a polynomial is normal if all its monomials involve
just the same set of variables; for example, az; + B2 + 72 and az1z2 +
Bz32123 + ¥2123 are normal polynomials). Using deletions of 2;’s (that is,
the endomorphisms of F taking the corresponding z;’s to 1), we see that all

these normal polynomials also belong to I. But a normal polynomial
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of degree at most n — 1 cannot involve more than n — 1 variables, and it

remains to notice that w is a consequence of 2,23 ...2,. O

1.1.2. Corollary. The aziomatic rank of an n-stable variety does not

exceed n. O

Of course, there exist stable varieties whose axiomatic rank is strictly
less than the class of stability. For instance, consider the variety Uy =
[(z — 1)?]. Then ro(U2) = 1, but in §1.4 we will prove that U, is a stable
variety of class 3 (provided 1/2 ¢ K).

1.1.3. Corollary. Let the ground ring K be noetherian. Then every

stable variety of group representations over K is finitely based.

Proof. By Proposition 1.1.1, every n-stable verbal ideal of K F is
generated, as a completely invariant ideal, by 2,25 ...2, and a set {ur},
where each uj is a polynomial of degree < n —1 involving < n — 1 variables
z;. Up to permutations of z;, we may assume that each uj is a polynomial in
the variables z;,...,2n—1. Then {u;} is contained in the K-submodule M
of K F generated by the monomials of degree < n —1 in the indeterminates
Z1yee.y2n—1. Since M is a finitely generated module over a noetherian ring,
it is a noetherian module. Therefore the K-submodule generated by {u}
is generated by some finite subset. This subset together with 2,22...2,

constitutes a finite verbal basis for I. O

Corollary 1.1.3 can be generalized in several directions. We will prove
one of such generalizations which was inspired by a theorem of Higman [36]

on varieties of groups.

1.1.4. Theorem (Grinberg [22]). Let K be a noetherian ring. If X
is a stable variety of group representations over K and © is a finitely based

variety of groups, then the variety X x O is finitely based.

The proof is similar to that of Higman’s theorem (cf. [36] or [68, 34.23]).
First we establish one technical fact. Denote by 7, the endomorphism of

the group F defined by the rule z;7,, = z;4, (! = 1,2,...).
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1.1.5. Lemma. If X is determined by an identityu = u(z1,...,2m) €
KF and © is determined by an identity f = f(z1,...,25), then X X O is
determined by the set of identities

+1 1 g1 +1 +1 +1
u(f5 e fiopr e Toes oo (me1)k41 -2 ik (1)

where k =1,2,... and f; = frit.

Proof. From the definition of X x © it is easy to understand that if
I =1dX and H = ©*(F) is the O-verbal subgroup of F, then Id(X x Q)

consists of all elements of the form
w(hyy...,hs), where w(zy,...,2,)€I, h;€ H.

It follows that Id(X x O) is generated, as a fully invariant ideal, by the set
of identities
u(hy,...,hy), where h;e H.

Every word from H can be presented in the form (fl:':1 fzil o fEN)®, where
a € End F and the f; are copies of f written in pairwise disjoint sets of the

variables z;. Therefore it is clear enough that the system of identities (1)
is a verbal basis for Id(X x ©). O

Let s be a positive integer. For every sequence of natural numbers m; <
my < --- < my, where t < s — 1, define an endomorphism w(my,...,ms) of
F by the rule

_ T;j ifi= mj,
zim(ma,... me) = { 1  otherwise.

In addition, we set z;7(0) = 1 for each ¢.

1.1.6. Lemma. Every word w € KF {is equivalent to a set consisting

of all words of the form ww(m,,...,m,) with t < s, plus a word from A®.
Proof. Apply 0.5.12 to w, then
w=u+vy+v2+---+u,

where u € A, but each v; has the form v; = tw#;, ...0; and involves

strictly fewer variables than w. Since all the v; are consequences of w, the
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word u is a consequence of w as well. Therefore w is equivalent to the set
{u,v1,...,v4}. If some v; involves more than s variables, we can apply the
same argument to this v; and replace it by a word from A°® plus a finite set
of words each involving fewer variables than v;. Continuing this process, we
eventually come to a finite set of words which either involve at most s — 1
variables or belong to A®. The latter can be replaced by a single word from
A?, while the former can be written in the variables z,,...,z,_,. Taking
into account the procedure of obtaining these words in z;,...,z,_;, we see

that they all are of the desired form wwx(mi,...,m;). O

Proof of Theorem 1.1.4. Since every finite set of identities is
equivalent to a single identity, we may assume that X is determined by an
identity v = u(z;,...,%n) € KF (in view of 1.1.3) and © is determined by
an identity f = f(z1,...,2,) € F. By Lemma 1.1.5, X x O is determined
by the set (1). Denote Id(X x ©) = I. Since X is stable (say, of class s),
for any ¢y,...,9, € @*(F) we have

(1 —1)...(gs — 1) € Id(X x O).

In particular, (f; —1)...(fs — 1) € I, where the group words f; = fri~!
are defined as in 1.1.5.

Consider a free group ® of countable rank with free generators y1, 2, - . .
and let M be the subset of K ® consisting of

(i) all words u(y!...yE!, y,ﬂl ey y(ﬁ_l)kﬂ yE),
where ¥k =1,2,..., and

(i1) the word (y1 — 1)(y2 — 1)...(ys — 1).
Apply Lemma 1.1.6 to this set M. Denote now by m(mi,...,m;), where
my < --- < my and ¢t £ s — 1, the endomorphism of ® taking y; to y; if
¢ = mj, and to 1 otherwise. By 1.1.6, every word w from (i) is equivalent
to a set consisting of all the wn(m,,...,m,) and an element from A°. Note
that the latter is a consequence of the word (y; —1)...(ys —1). Since each
element from (K ®)™(™1:++™) involves at most s—1 elements y;, it is enough
to take the words (i) only with £ = s — 1. In other words, M is equivalent
in K® to its subset M™ consisting of the words

+1 +1 +1 +1 +1 +1
w(yi .- -VYii1 Vs e Yaie1yr e y(m_l)(3_1)+1...ym(3_1))
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and (y1 —1)...(ys —1). Note that M* is finite.

Let now n: ® — F be the homomorphism defined by the rule y) = f;.
Lemma 1.1.5 guarantees that the set M7 is a verbal basis for I (that is, I
is generated by M™ as a verbal ideal). If we establish that M7 is equivalent
in K F to its finite subset M*", the proof will be completed.

Since M and M* are equivalent in K®, it follows that M can be ob-
tained from M* by means of addition, multiplication by arbitrary elements
from K ®, and endomorphisms of ®. The first two operations are preserved
under . However, an arbitrary endomorphism of ® does not correspond, in
general, to any endomorphism of F'. Fortunately, in proving that M and M*
are equivalent in K ®, we used only the endomorphisms n(m,,...,m;). But
it is not hard to understand that these endomorphisms do correspond to cer-
tain endomorphisms of F' which map blocks of variables z(;_1)n41,---,%in
either onto other blocks of this form, or onto 1 (it is essential that the sets
of variables ocurring in the words f; = y; are pairwise non-overlapping).
This eventually shows that the sets M" and M™*7 are equivalent in K F, as
required. O

Note. If X is an arbitrary finitely based variety of representations and
© a finitely based variety of groups, then X x © need not be finitely based.
Indeed, consider the Burnside varieties of groups B, and B4 (determined

by 22 =1 and z* = 1 respectively). Then
(w‘B.;) X %2 = w(‘B4‘Bz)

where wB4 and B, are finitely based. But the group variety B4B, is not
finitely based (Kleiman [41]) and so, by 0.3.3, w(B4B2) is not finitely based

either.

We turn now to the basis rank of stable varieties. The following state-

ment is analogous to Theorem 35.11 from [68].

1.1.7. Proposition. The basis rank of an n-stable variety of group

representations does not exceed n.

Proof. Let X be an n-stable variety and let Fr,X = (A4,G) be the

free cyclic representation of rank n in X. We prove that for each r > n
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the representation Fr,X can be isomorphically embedded into the direct
product of (;) copies of Fr, X'. This will imply that X = var(Fr,X), so that
rp(X) < n.

Let {a; g1,...,9n} (where a € 4, g1,...,9n € G) be a system of free
generators of Fr, X. Consider the set M consisting of all possible n-tuples

m = (my,...,my,), wherel1 <m; < ... < m, <r, and let
(Fr, X)™ = (aM,GM) = (4,4)

be the direct M-power of Fr,X. Note that |M| = (]). Choose in G the

elements §g1,...,J, defined as follows:

_ g9; i 1=my;

gi(m) = { 1 otherwise. @)

Furthermore, let @ be the element of A such that @(m) = a for each m € M.

Denote by p = (B, H) the subrepresentation of (4,G) generated by the set

{a; g1,...,9+}, that is, H = {(g1,...,§») and B = @ o KH. We prove that
p~Fr.X.

It suffices to show that if for some v = u(z;,...,z,) € KF the equality

aou(gy,...,9-)=0 (3)

holds in p, then u(z,,...,z,) is an identity of X. First of all we note that (3)
must be satisfied componentwise, that is, for every m = (my,...,my) € M

the equality
aou(gi(m),...,gr(m)) =0 (4)

holds in Fr,X. Now we again use the endomorphisms n(my,...,my) of F.
Recall that g

z; if i =my (5)
One can see from (2) and (5) that u(g,(m),...,gr(m)) € KG is obtained
from umw(my,...,m,) € KF by substituting g;’s for the corresponding z;’s.

Zim(ma, .. mn) = { 1 otherwise

Hence (4) can be rewritten as

ao[(ur(my,...,mp))(g15...,9n)] = 0.
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This is a relation between the free generators of Fr, X, therefore un(m,,...
...,My) is an identity of Fr,X. Since um(m,,...,my,) involves just n vari-
ables, it is an identity of the whole variety X'. This implies, of course, that
every word um(my,...,m;), where m; < --- < myand t < n—1,is an
identity of X.

By Lemma 1.1.6, u is equivalent to the set consisting of all possible
words um(my,...,ms), where m; < --- < myand t <n -1, and an element

from A™. Since all these words are identities of X, so is u. O

1.2. Homogeneous varieties

It is well known that every variety M of linear algebras, say over a field
of characteristic zero, possesses an important property of homogeneity: for
each identity of M, all its homogeneous components are also identities of
this variety (Mal’cev [61]). As a result, one can reduce arbitrary identities of
algebras to their homogeneous components which, in turn, can be reduced to
multilinear identities. This fact is of principal importance for the theory of
varieties of algebras because multilinear identities are much more accessible
to study and classification than arbitrary ones.

In the theory of varieties of group representations the situation is more
complicated. Indeed, identities of group representations are elements of the

free group algebra K F, and it is clear that from the usual presentation

u=u(21,...,20) = 3 Aifi(21,...,2a) (M € K, fi(21,...,20) € F)

of an arbitrary u € K F one cannot extract any “homogeneous components”
of u. However, elements of the algebra K F have another canonical presenta-
tion, based on the Magnus embedding (see § 0.5). Namely, K F is identified
with its natural image in the algebra K ((Z)) of formal power series in a
countable set of variables Z = {z1,22,...}. Every u € KF is uniquely

presented as a formal power series
u=up)tug t--+uUn)t+-...

where u(n) = Y Ai,...in %, -+ Zi, 18 a finite K-linear combination of mono-

n

mials of degree n in variables z1,2,,... (in particular, z; = 1 + 2;). The
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element u(,,) is called the n-th homogeneous component of the given u. This
naturally leads to the following definition [24]: a variety of group represen-
tations X is called homogeneous if for any identity u of X all homogeneous
components u(,) are identities of X' as well.

Contrary to varieties of algebras, a variety of group representations
need not be homogeneous (even over a field of characteristic zero). For

example, the variety wB; = [z? — 1] is not homogeneous, for
22 — 1= (2 — 1) +2(z; — 1) =2 + 22,

but 2z, evidently, is not an identity of wB,. Later we will present more
interesting examples.

In general, one can say that the requirement of homogeneity is rather
strong; the fact that a variety is homogeneous gives essential information
about this variety. In particular, the idea of homogeneity plays an important
role in the investigation of stable varieties.

In the present section several useful properties of homogeneous varieties
will be established. The first three assertions were proved in [98]. For
convenience, elements from K F' will sometimes be called words (as opposed
to arbitrary series from K{{(Z))). Let v € K F be an arbitrary word and let
u = uy+uy)+---+um)+... beits decomposition as a formal power series
in the variables z; = z; — 1. The word u(,) is homogeneous of degree n. It is
clear that u(,) can be uniquely decomposed as a sum of multihomogeneous
words, that is, words which are homogeneous in each z;. They are called
the multihomogeneous components of the given u.

It is well known that every variety of linear algebras over an infinite field
is multthomogeneous, 1.e. all multihomogeneous components of its identities
are identities of this variety as well. On the other hand, it has just been
shown that a variety of group representations need not even be homoge-

neous. However:

1.2.1. Lemma. If a variety of group representations over a field of

characteristic zero is homogeneous, then it is mullihomogeneous.

Proof. We use a standard argument. Let X be a homogeneous variety
of representations. This means that the verbal ideal Id X = I is homoge-
neous, that is, for each u € I all the u(,) belong to I as well. It suffices to
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show that if u € I is a homogeneous word of some degree m, then each mul-
tihomogeneous component of u belongs to I. Let zy,...,2, be the variables
involved in u; then u can be presented in the form v = ug + u; + - -+ + u,,
where u; is homogeneous of degree 7 in 2,. Denoting equality modulo I by

=, we can rewrite this as
uo+ur+---+u, =0. (1)

Consider the endomorphism ¢ : z; — z2 of F (that is, z¥ = 22 and 2f = z;

for i # 1). Then 2¥ = 22; + 27 and hence, applying ¢ to (1), we obtain
uo + 2u; + 2%us + -+ 4+ 2°u, + terms of degree > m =0.
Since I is a homogeneous ideal, it follows that
uo + 2uy + 2%uy + -+ + 2%, = 0.

Next, apply to (1) the endomorphism z, — z3. Then z; — 321+ higher

degree terms, and we obtain
uo + 3uy + 3%us + -+ + 3%, = 0.

Continuing this process, we eventually come to the following systems of

equalities modulo I:

o+ urtuz+---+us =0,
uo + 2u1 + 2%us + -+ +2%°u, =0,
uo + 3u; +3%us + -+ + 3%, =0,

uo+(s+1)u1+(s+1)2u2+---+(s+1)"u,EO.

Since char K = 0, the determinant of this system is different from zero.
Hence ug = u; = -+ = u, = 0. We can now apply the same argument to

the words u; and the variable z,, and so on. O

Note. In ring theory the above argument is valid over an arbitrary
infinite field K. In our case it is not true, for we can use not all possible en-

domorphisms of the algebra K F, but only those induced by endomorphisms
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of the group F. In informal language this means that instead of z; we can
substitute not all possible Az; (A € K), but only nz; (n € Z). Therefore
the condition char K = 0 is essential. However, it is easy to see that if K
is any commutative ring, the proof of Lemma 1.2.1 remains valid for such

u whose degree m satisfies the condition 1/(m —1)! € K.

Let K(Z) be the absolutely free associative algebra (without 1!) over
K on a countable set of variables Z = {21, 22,...}. It is naturally contained
in the algebra K ((Z)) and, moreover, in the subalgebra K F of K({(Z)). Let
u = u(21,...,2) be a multihomogeneous element from K(Z), m; = deg,, u
and m = my + ... + m,. Denote by linu = (linu)(2y,...,2m) the full

Lnearization of u, that is, the multilinear part of the polynomial
u* = u(zl +-- '+zm1 y Zmqy+1 +-- '+zm1+m2’ coey Zmateetmg o1+l +- '+Zm).

Example. Let u(z;,20) = z}23. Then m; = 3,mz = 2 and uv* =
(21 + 22 + 23)*(24 + 25)%, whence

linu = 2120232425 + 2122232524 + 2221232425 + ...

= Z 25(1)20(2)20(3) #7(4) %7(5)

o,7
where o is an arbitrary permutation of {1,2,3} and r an arbitrary permu-
tation of {4,5}.

1.2.2. Lemma. If char K =0, then for any homogeneous verbal ideal
I ofKF
vé€l < linuel

Proof. We use the same notation as above. Consider an endomor-
phism ¢ of F such that
2y = &1 Ty, T = Bmytl e Tmadmgs cer s T = Tmydedma_y+1 -0 Tme
Then
2y =21+ 23+ -+ + zm, + higher degree terms,
2y = zm,41 + -+ + Zm,4+m, + higher degree terms,

2?2 = zmy4edmy_141 + ++ - + 2m + higher degree terms.
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Suppose that u € I. Then

W =u(z1 4+ zZm ey oony Zmytedme 1+t Zm +..) €L

It is evident that the multilinear with respect to z,,..., 2, component of
u? is exactly the polynomial linu. By Lemma 1.2.1, all multihomogeneous
components of any element from I are contained in I. Thus v € I =

linu € I. The converse follows from the formula

1 .
u(zl,...,zn)z—m e '(hnu)(u, ,u) O
1:se:Mp.

my My

Notes. 1. If the ground ring K is arbitrary then, as in the previous
statement, the proof of Lemma 1.2.2 remains valid when 1/(m — 1)! € K.

2. Lemma 1.2.2 contains several results from [24], namely Theorem 1,
Corollaries 3, 4 and 5.

A variety of group representations is said to be a Magnus variety if it
is generated by stable representations. If X' is a Magnus variety then, by
0.2.6, all free representations of X belong to the class VSCK, where K is
the class of all stable representations from &X'. It follows that every free
representation ¢ = (E,F) of X is residually stable, that is, E possesses
a system of F-submodules A; such that {)A; = 0 and the corresponding
factor-representations ¢; = (E/A;, F') are stable. Conversely, if all free
representations of X are residually stable, then X is certainly generated by

stable representations and therefore is Magnus.

1.2.3. Proposition. 4 variety X is homogeneous and Magnus if and
only if for arbitrary u € KF

veldX = Vn: yy) €IdX. (2)

Proof. Let X be a homogeneous Magnus variety. Then = is au-
tomatically valid and it suffices to prove the reverse implication. Denote
IdX = I and let © be an element of K F such that u(,) € I for all n. Since
X is a Magnus variety, the representation Fr X = (K F/I, F) is residually
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stable. In other words, the following condition is satisfied in the algebra
KF=KF/I:

A*=10

D}

k=1

or, equivalently,
oo

NI +ak =1 (3)

k=1

where A is the augmentation ideal of KF. Present v in the form u =
Zf;ll u(;) + Yok ui).- The first summand belongs to I by the choice of
u. The second summand belongs to A* by Proposition 0.5.4 (an element
of KF is contained in A* if and only if its homogeneous components of
degrees < n are all equal to zero). Hence v € I + AF for each k and so, by
(8), u € I, as required.

Conversely, let X satisfy (2). Since = means homogeneity, it is enough
to show that X is a Magnus variety, i.e. that (3) is satisfied for I = Id X.
Let u € ﬂ,;’il(f + Ak), then for each k we have v = vy + wg, where vy €
I, wy € AF, Hence for i =1,...,k —1 the i-th homogeneous component of
u coincides with the i-th homogeneous component of vi. Since v € I and I
is homogeneous, all the homogeneous components of vy belong to I. Thus
U(1)y++-,Uk—1) € I, and this is true for arbitrary k. It remains to apply
«—. 0O

Let M be a set of identities. It is natural to ask what properties of
the identities from M will guarantee that the variety determined by M is
homogeneous? For example, is it enough if the elements of M are themselves
homogeneous? The answer to this question will be given in §1.5, but now

we establish the following fact.

1.2.4. Proposition (Grinberg and Krop [24]). Any variety determined

by a set of multilinear identities is homogeneous.

Proof. Let M be a set of multilinear identities and I = Id(M) the
verbal ideal of K F generated by M. We have to show that I is homogeneous.

a) Let us prove that if u(z,,...,2,) € M and ¢,,...,¢, are monomials

in arbitrary variables z;, then u(ecy,...,cn) € I. Without loss of generality
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we may assume that the monomials ¢,,..., ¢, involve mutually disjoint sets
of variables z; and, furthermore, that all these variables are different from
Zlyeeny2Zn.

First we prove that u(e¢y,22,...,2,) € I. We proceed by induction on
deg ¢;. If deg ¢; =1, it is nothing to prove. Suppose that our assertion has
been proved for deg c1 < m, and let deg ¢; = m, thatis, 1 = 25,25, ... 2,

Let ¢ be the endomorphism of the group F defined by the rule:

P —me . | A ;
zf = TiTiy .. Ty, z; =z; for j#1

Then

2 =(zy - 1) =224, ...25, — 1
= (1 +Zi1)(1 +z,~,)...(1 +z,-m)—1

=0 +de

where each di is a monomial of degree < m in variables 2;. Since the word

u(21,...,2,) is linear with respect to z;, we have
I3 u(zry...,20)? = u(z],...,2%
=u(cl+2dk, 22400y 2n) (4)
=u(c1,22,..,2n) + Zu(dk,zz,. ceyZn)e

Fach summand u(dk, 22,...,2,) belongs to I by the induction hypothesis,
therefore it follows from (4) that u(¢y,22,...,25) € I, as desired.
Repeating this argument, we successively obtain that u(ey,ec2,2s,...
ceoy2n) € I, u(ey, ca,¢3,...,2,) € I, ete. (It is essential that u is multilinear
and that each successive monomial involves “new” variables z;, ).
b) Let now w € I; we have to prove that w(m) € I for every m. Since
w is a finite sum of elements of the form au¥b, where a,b ¢ KF, u ¢ M

and ¢ € End F, we may assume without loss of generality that w = au®b.
Let
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(note that the homogeneous component c{o) of ¢/ must be equal to 0 because
z; € A and therefore ¢/ = z¥ € A as well). Then

w = Za(i) . u(Zczi),...,Zc&)) . Zb(,-).

Using multilinearity of u, we see that the homogeneous component w(n,) of

degree m of w is a finite sum of elements of the form

a(k)u(c(lil),...,c?i“))b(l) (5)

where k + 1) + --- + i, + | = m. We emphasize that a(k),c{i’_),b(l) are
homogeneous polynomials of degrees k,%;,l respectively. Further, since the
word u(21,...,u%s) is multilinear and each c{i,_) is a sum of monomials, we

eventually obtain that w(m,) is a finite sum of elements of the form
a(k)u(dl greey dn) b([)

where all d; are monomials. By the first part of the proof, u(d;,...,d,) € I

whence the theorem follows. O

The results of this section lead naturally to the following questions.
First, surprisingly, we do not have any examples of homogeneous non-

Magnus varieties.
1.2.5. Problem. Is every homogeneous variety Magnus?

To explain the essence of this problem, recall that a variety X is ho-

mogeneous if and only if for any v € K F
u €IdX == Vn: uy) €1dL. (6)
It remains to compare (6) and (2).

1.2.6. Problem. Is every variety definable by multilinear identities

Magnus?

In view of Theorem 1.2.4, the connection between the above two prob-

lems is obvious. Note that if Problem 1.2.5 is solved in the affirmative, then
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Theorem 1.2.4 can be reversed, at least over a field of characteristic zero.
Indeed, let char K = 0, I a homogeneous fully invariant ideal of K F and
M the set of all multilinear elements from I. If v is an arbitrary element
from I, then u(,) € I for all » and so linu(y) € I by Lemma 1.2.2. Hence
linug,y € M C Id(M). The ideal Id(M) is homogeneous by 1.2.4, therefore,
applying 1.2.2 again, we see that u(,) € Id(M). Now suppose that the an-
swer to (i) is positive. Then Id(M) is a homogeneous Magnus verbal ideal
and, by 1.2.3, we have u € Id(M). Thus I = Id(M), that is, I is generated

by its multilinear words.

1.3. Connections with varieties of associative algebras

One connection between varieties of (associative) algebras over K and
varieties of group representations over K is obvious. Let M be a variety
of algebras over K and let T = T(M) be the set of all its identities in the
free associative algebra K(X) (without 1!) on a countable set of variables
X = {z1,%2,...}. This set is a T-ideal of K(X), that is, an ideal which
is admissible under all endomorphism of the K-algebra K(X). Now, since
K(X) is naturally contained in the group algebra K F, T is a subset of K F
and therefore determines a variety of group representations over K, say M'.

However, the connection M — M’ does not have really deep conse-
quences. The point is that there is an essential difference between identities
of associative algebras (=polynomial identities) and identities of group rep-

resentations. Consider, for example, two simple polynomial identities
z1%2...2, and z".

They determine the important varieties of n-nilpotent algebras and n-nil-
algebras respectively. But as identities of group representations they deter-
mine nothing (or more formally, each of them determines the variety £ of
zero representations), because we can substitute 1 for all the z;!

The aim of the present section is to establish another connection be-
tween varieties of algebras and varieties of group representations, which

proves to be more interesting and efficient. We will systematically use the
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canonical embedding of algebras
K(Z) C KF C K{(Z))

under which z; = 1 + 2; are free generators of the group F. For brevity
and convenience of formulations, the variety £ of zero representations is

excluded from the subsequent considerations.

1.3.1. Theorem (Vovsi [98]). Let K be an infinite field. Then to ev-
ery variety M of associative algebras over K there canonically corresponds
a homogeneous Magnus variety M® of group representations over K. More-

over:
(a) the map o is injective;

(b) if char K = 0, then Ima coincides with the set of all homogeneous

Magnus varieties of group representations over K;

(¢) a variety of algebras M is nilpotent of class n if and only if M™ is

stable of class n;

(d) a is a monomorphism of semigroups, that is, (M M3)* = MFMS
for all varieties of algebras M, and My;?

(e) @ is a homomorphism of lattices, that is, (M;V M2)* = MTVMZ
and (M1 A M2)® = M$ AMS for all varieties of algebras My and M,.

Proof. 1) For an arbitrary T-ideal T of K(Z), let
T*={u€ KF|Vn: up) €T} 1)
In other words, T'* can be defined as follows. Consider in K(Z) the filtration

K(Z) > (K(Z)*D>---D(K{(Z))"D...,
then the completion m of K(Z), corresponding to this filtration, is pre-
cisely the algebra K((Z)). If now T is the completion of T, then T% =
TnKF.

1Here the product of varieties of algebras is meant in the sense of Bergman-Lewin
[6], that is, M1 M. is the variety corresponding to the T-ideal T>T) where T; = T(M;).
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We prove that T is a homogeneous Magnus verbal ideal of K F. First,
it is clear that T is a proper K-subspace of KF. Second, if u = } u(,) €
T%, v =73 vnm) € KF, then (uv)n) = >, 11 ¥(k)¥)- Since uy € T for
all k, it follows that (uv)(n) € T for all n. Therefore uv € T* and similarly
vu € T® Thus T¢ is an 1deal of K F. Let us show that T is invariant
under an arbitrary endomorphism ¢ of F. Again let v = u(z;,...,up) =
Y U(n) € T*, then u(y) € T for each n. We have to prove that if v = u?,

then v(,) € T for each n. Fix an arbitrary n and, calculating modulo A™*1,

obtain
n n
v=u¥= (Z u))¥ = Z ui)(zf,...,2%) mod A™Y
i=1 i=1
Modulo A™*!, each z¥ is a finite polynomial in z;, say z{ = f;(z1,...,2),

j=1,...,n. Thus

n

v=vay+ vy = Y ul@)(fryeee, fm) mod A™FY

i=1
Now we note that since u(;)(21,...,2m) € T, it follows that uy(f1,..., fm)
€ T as well, whence v(;) + -+ 4+ v(n) € T. This is true for all n, and hence
v(n) € T for each n, as required.

Thus T is a verbal ideal of K F. It follows from (1) and Proposition
1.2.3 that it is homogeneous and Magnus. Finally, since all T-ideals over an
infinite field are homogeneous, it is clear from (1) that the map T — T* is
injective. In terms of varieties we can say that a is an injection of the set of
varieties of algebras into the set of homogeneous Magnus varieties of group

representations.
2) Now we will prove that if char K = 0 and I is a homogeneous Magnus
verbal ideal of K F, then the set
IP ={uc K(Z)|Vn: u, €I} (2)

is a T-ideal of K(Z). Clearly I? is an ideal, and since I is multihomogeneous
(Lemma 1.2.1), it is evident that I? is multihomogeneous as well. Therefore
it suffices to prove that if u = u(z,...,2¢) is a multihomogeneous element
from I? and ¢ € End(K(Z)), then u¥ € I?. Denote

deg, u=m;, mi+-.-+mp=m.
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Then v = u(y) and, by (2), v € I. Let v = v(21,...,25) = linu. By
Lemma 1.2.2, v € I and, again by (2), we obtain v € IP. Let us show that
v? € IP,

(i) Let first all 2 be monomials:

Y _ Y _ Y _
2y T 211000 21ryy 29 T 22100022155 200 3 2y = Zml o v e Zmry, .

Then v¥ = v(z11 ..+ 21719+ ++yZm1 ++ - Zmr,, ). Our objective is to obtain the
same element from v by means of group endomorphisms. Denote ry +--- +

rm = r and apply to v an endomorphism 7 of the group F such that
Ty S T11.e e Tlryy Ly = Z21 00 L2rgsees s Ty, = Tant oo s Ty
It is easy to verify that
2] =z ...2, + lower degree terms.
Therefore, it follows from the multilinearity of v that

I3v™ =v(z],...,2,)

=V(Z11+++ Z1r s+ o2y Zml ++» Zmry, )+ lower degree terms.

The last summand is exactly v¥ and simultaneously it is the homogeneous
component of degree r of v™. Since I is homogeneous, we have v¥ € I,
whence v € IP,

(ii)) Now let zf = f; be arbitrary polynomials from K(Z). Then f; =
EJ- a;j fij, where a;; € K and f;; are monomials. Since v is multilinear, it
follows that

v = 0(fiyeey ) = Y G1aee s m@rgy e @min ¥ friny oo s Frmjn )

All the v(fijys- .-, fmjm ) belong to I# by (i), therefore v¥ € IP,
Now we return to the word v = u(z1,...,2). It is a consequence, in

the sense of ring identities, of its full linearization v, that is,

u = Zaiv"b‘b; where a;,b; € K(Z), ¥; € End(K(Z)).
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Then u? = 3 afv¥¥b? and by the above we have v¥¢ ¢ IP for all s.
Therefore u¥ € I? and so I? is a T-ideal of K(Z).

3) Let char K = 0. It follows from 1), 2) and Proposition 1.2.3 that if
T is a T-ideal of K(Z), then T*# = T, but if I is a homogeneous Magnus
verbal ideal of K F, then I?® = I. Thus the maps o and 3 realize a one-
to-one correspondence between all T-ideals of K(Z) and all homogeneous
Magnus verbal ideals of K F. In other words, over a field of characteristic
zero, a is a bijection of the set of all varieties of algebras onto the set of all

homogeneous Magnus varieties of group representations.

4) To prove that a variety of algebras M is n-nilpotent if and only if

the variety of representations M is n-stable, it suffices to show that
2129...2, €T = 2129...2, € T®

for any T-ideal T of K(Z). But this is evident in view of (1) and (2).

5) It remains to prove that « is a monomorphism of semigroups and
lattices. Let T) and T be arbitrary T-ideals of the algebra K(Z). We prove
that (I1T2)* = TT3. Let w € (Th13)%, that is, w € KF and w(y,) € Th T
for each n. This means that for each n

kq

Wny = Zu?v?, where u} €Ty, v €Ty

i=1
(do not confuse the upper indices with exponents!). Since T-ideals over
an infinite field are homogeneous, it follows from (1) that T; C T, whence
u € I, v? € T3 (1 = 1,...,ks) and so w(,) € TYT5". It is known that the
product of Magnus varieties of group representations is also a Magnus vari-
ety (80, Theorem 24.3.2], hence T*Ty* is a Magnus verbal ideal. Proposition
1.2.3 implies now that w € T T3,

Conversely, let w € TP Ty, that is,

w=uv'+... +u™™, where ut e T, v € Ty
By the definition of the map «a, we have ufn) €T, vfn) € T, for all 7 and
n. Therefore

m m
Wiy = D (w0 )my = Y _( Y uinvy) € 1T

=1 =1 k+l=n



1.3. CONNECTIONS WITH VARIETIES OF ASSOCIATIVE ALGEBRAS 53

and hence w € (T1T3)*. Thus TYTy = (T I2)~.
The proof of the equality (T3 NT3)* = TN T3 is even simpler. Indeed,

’wG(TlﬂTz)a — Vn: ’w(n)GTlﬂTz —

= (Wn: wpyeh) & (Vn: wmy €2) <= (wely) & (weTy).

In a similar way, one can verify that (T} + T2)* = T7 + T5*. This completes
the proof. (J

Note. In proving Theorem 1.3.1, we deliberately restricted ourselves
to representations over infinite fields where the result has a quite complete
form. However, it should be noted that some parts of the theorem are valid

over any ground field and even over an arbitrary commutative ring.

Theorem 1.3.1 has several applications. First, it implies the following

interesting fact.

1.3.2. Corollary. Let char K = 0. Then for every n the lattice of
all n-nilpotent varieties of algebras over K is isomorphic to the lattice of

homogeneous n-stable varieties of group representations over K. O

Let us have a look at this isomorphism from the standpoint of identities.
If M is a variety of algebras and M“ the corresponding variety of group
representations then, by (1) and (2), the identities of these varieties have
the same homogeneous components. The only principal difference consists
in the fact that identities of M are (finite!) polynomials in z;, but the
identities of M® are (infinite!) series in 2z;. If now M is a n-nilpotent
variety of algebras, then M is n-stable and therefore Id(M®) 2 A™. This
shows that, modulo A™, elements from Id(M®) can also be regarded as finite
polynomials. In other words, modulo the word 2,25 ... z,, the identities of
M and the identities of M are just the same.

Thus n-stable varieties are uniquely and exzplicitly determined by T'-
ideals of the free associative algebra K(Z) = A which contain the ideal
A™, Since all such ideals are homogeneous, but every homogeneous word

is equivalent to a multilinear word of the same degree, these ideals are
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characterized by their multilinear elements. More exactly, let II; be the

subspace of A consisting of all multilinear polynomials

u(zl,...,zk) = Z /\aza(l) ---za(k)
gES,
of degree k from A. If T is a T-ideal of A containing A", then denote
T =TNI (k=1,...,n - 1). Evidently:

(i) Tk is a subspace of II; invariant under the natural action of the sym-
metric group Si;

(i) if v = u(z1,...,2k) € Tk, then vz € Toyr, 2ep1¥ € Thga, u(z1,...,
2i_1, 252841y 2iq1y .- ,zk) S Tk+1 and u(zl, ooy Zi 13 2k41259 241y
...,zk) S Tk+1.

It is commonly known that the correspondence T — (T4,T3,...,Th_)
is a bijection between all T-ideals of the algebra A containing A™, and
all (n — 1)-tuples (Ty,T%,...,Tn_1) satisfying (i)—(ii). This leads to the
following result.

1.3.3. Corollary (Grinberg and Krop [24]). Let char K = 0. Then
there exists a one-to-one correspondence between all (n — 1)-tuples (T1, T,
«o.yTn1) satisfying (i)-(it) and all n-stable homogeneous varieties of group

representations over K. O

In particular, take a variety X of group representations such that
S" 1 C X CS8" Then A1 DIdX D A" (whence X is certainly ho-
mogeneous), and so in the corresponding (n — 1)-tuple (11, T3, ...,Th_1) we
have T} = .-+ = T5,_o = 0. Therefore Id X is completely determined by its
subspace Tr_1 (plus, of course, the word z;22 ... 2,), and we obtain another
result from [24]:

1.3.4, Corollary. Let charK = 0. Then there exists a one-to-
one correspondence between varieties X of group representations such that
S"1 C X C 8™, and S,_,-invariant subspaces of I,,_,. O

We note in conclusion that homogeneous varieties of group represen-
tations were first considered in [23] and [24]. Most of the results obtained
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there were analogous to well known facts of the theory of varieties of asso-
ciative algebras, but the roots of this analogy remained unclear. Theorem
1.3.1 clarifies the situation completely. In addition, it shows that the col-
lection M(K') of varieties of group representations is really very rich. From
§0.2 we already know that to each variety of groups one can assign a variety
of group representations w®, and that the map © — wO is injective. It is
natural to say that varieties of representations w® are of group type. Now
we have constructed the injective map M — M (provided K is an infinite
field) from the set of varieties of associative algebras over K to M(K); it is
natural to say that varieties of M® are of ring type. Thus the problems of
studying varieties of groups and associative algebras are “embeddable” in

the corresponding problem for varieties of group representations.

1.3.5. Problem. Describe all varieties of representations which are

simultaneously of group type and of ring type.

If, in particular, char K = 0 then, by Theorem 1.3.1 (b), this is equiv-
alent to describing all varieties of groups © such that w® is homogeneous

and Magnus simultaneously.

1.4. Stable varieties of class 4

In the present section, following [23], we will give a classification of
4-stable varieties of group representations over a field of characteristic zero.
We start with one auxiliary statement which in an explicit form was estab-
lished in [23], but in essence had been proved much earlier (see for instance
[54] and [39]). Recall that Us is the variety of 2-unipotent representations,
i.e. the variety determined by the identity (z — 1)2.

1.4.1. Proposition. Over an arbitrary ring with 1/2, the variety U

is stable of class 3.

Proof. Denote Uy = IdY, and let = denote equality modulo U; in the
algebra K F. We have to prove that z; 2223 = 0 where, as usual, z; = z; - 1.
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Apply the endomorphism 1 — z1z2 of F to the equality
2 =0. (1)
Then 21 — 21 + 22 + 2123, and it follows from (1) that
0=(n1+zn+zn2n)=nn+nn+2aznn+ 2222+ 21222,

Multiplying the last equality by z1 on the left and by 2z, on the right, we

obtain z;22272, = 0, whence
2129 + 2021 + 212921 + 222129 = 0.

Again multiply by z; on the left; we get 2,222 0 and so 222,z = 0.

Consequently,
21290 = —202;. (2)

Now apply to (1) the endomorphism z; — z;z223. Then 2, — 2, + 25 +

23 + 2129 + 2123 + 2223 + 212223, and it follows from (1) and (2) that

_ 2

0=(z1+22+2z3+ 2122+ 2123 + 2223 + 212223)
= 2212023 + 212320 + 232120 + 222321 + 222123
= 2212923 + (2123 + 2321 )22 + 22(2321 + 2123)

= 22, 292;.
Since 1/2 € K, it follows that 212,23 = 0. O

1.4.2. Theorem (Grinberg [23]). Over an arbitrary field of charac-

teristic # 2, every 4-stable variety is homogeneous.

Proof. Let X be a 4-stable variety, I = IdX and w € I. It has to
be proved that w(,) € I for each n. Since I D A*, we may assume that
w = wq) + W) + we).

Recall that a word v € K F is said to be normal if all monomials of its
decomposition into a formal power series involve the same set of variables

z;; this set is called the support of v and is denoted by Suppv. Each word
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from KF can be uniquely written as a sum of a finite number of normal
words which are consequences of the initial word.

We return to the word w € I. Present w as a sum of normal words.
Since these words are consequences of w, they all belong to I. Therefore,
without any loss of generality, we may assume that w = w;y + w(2) + w3
is a normal word from I. Since the monomials of w have degrees < 3, it
follows that |Suppw| < 3.

If [Suppw| = 3, then w = w(s) and there is nothing to prove. If
|Suppw| = 1, then w = az + B27 + vz}, where o,8,7 € K. As usual,
denote by = equality modulo I. Then

az + 622 + 23 =0.

If o # 0, we multiply the last formula by 2z} and, since 2z} = 0, it follows
that a2} = 0. Hence 2} = 0 and @z + B27 = 0. Multiplying the latter
by z1, we obtain 2§ = 0, whence z; = 0. Thus w(;) = wz) = w3 = 0. If
a = 0, that is w = B2 + vz}, the argument is similar.

It remains to consider the case when [Suppw| = 2. Then w(;y = 0 and
W= weo) +wgs) = 0. 3)

Here w(z) = az122 + f222, and w(3) = w' + w", where w' is homogeneous
of degree 1 in z; and of degree 2 in 2,, and w" is homogeneous of degree 2
in 21 and of degree 1 in 2,.

a) Let « + 8 # 0. Applying the map 22 — 2; to (3), we obtain
(c +8)2f +721 =

whence, by the same argument as above, 22 = 0. Therefore it follows from
Proposition 1.4.1 that A® C I, and so w(z) = 0 and woy) =w — w3 =0.
b) Let a + 8 = 0. Then w(z) = a(z122 — 2221) and, since for o = 0

there is nothing to prove, we may assume that a = 1. Thus
w=212 — 2921 + W +w" = 0. (4)

Let ¢ be the endomorphism of F defined as follows:

¢ _ -1
T =%,

ef =z; if i#1.

1
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Then 2§ = —z; + 22 — 2} +..., 2§ = 2, and, since A* C I, it follows that
w'¥ = —w', w'¥=w". Applying ¢ to (4), we obtain
0=(-=2 +zf — )z —2(—2 +zf - —w' +w

2 ' "
= —2129 + 292 +zfz2 —2zy —w +w,

and since zfzz — 292% = z3w + wz; = 0, it follows that

—z129 + 222, —w' + 0" = 0. (5)

Adding (4) and (5), we see that 2w’ = 0, whence w"” = 0 and similarly
w' = 0. Thus w3y = w’' + w" =0 and therefore wzy = 0. O

Consider several applications. Until the end of this section we take
K to be a field of characteristic zero. Denote by L(S*) the lattice of all
subvarieties of S*, by Ny the variety of nilpotent algebras of class 4 over
K, and by L(N,) the lattice of all subvarieties of My. Then Corollary 1.3.2
and Theorem 1.4.2 immediately imply:

1.4.3. Corollary. L(S*)~ L(N,). O

This implies, in particular, that the lattice L(S*) is not distributive,
since it is well known that L(N}) is not distributive — see [2].

It is now easy to describe all 4-stable varieties. According to 1.3.3
and 1.4.2, these varieties are in one-to-one correspondence with 3-tuples
(Th, T3, T3) satisfying the conditions (i)—(ii) from the previous section. Na-
mely, to each 3-tuple (T1,T%,T3) there corresponds the variety detrmined
by the set of identities T3 U T U T3 U {z;222324}. It remains to describe all
such 3-tuples.

1. If Ty # {0}, then T} =1I; = {az1| @ € K}. It follows from (ii) that
T2 =H2 and T3 = H3.

2. Let T) = {0}. Then T3 can be an arbitrary KS3-submodule of the
(right) K S3-module Iy = {az123 + B2221 |, € K}. Every proper KS,-
submodule of II; is one-dimensional, and it is easy to see that there are only

two such submodules:

A={a(z122 —z221)|a € K}, B ={B(z2122+ 222:)|B € K}.
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Therefore T5 must be equal to one of the following: {0}, 4, B, II,.

a) T, = II,. Then T3 = II5.

b) T, = {0}. Then T3 can be an arbitrary K S3-submodule of II3.

¢) T, = B. Then 2,23 + 222 is an identity of the corresponding variety,
and so zf is an identity of this variety as well. By 1.4.1, 2z, 2023 € T3, whence
T; = II3.

d) T> = A. Let C be a subset of II3 consisting of all elements

Z Qg25(1)20(2)20(3)

€S,
such that Y a, = 0. Evidently C is a KS3-submodule of I3, and since
dimg II; = 6 but dimg C = 5, we see that C is a maximal K S3;submodule

of II3. Furthermore, since ({0}, A, Ts) satisfies (ii), it is easy to understand
that T3 O C. Consequently, either T3 = C or T3 = II3.

Thus the description of all tuples (T1,T%,Ts) satisfying (i)-(i1) is fin-
ished. This completes the description of all 4-stable varieties of group rep-
resentations. For the sake of clarity, we list the above 3-tuples together with
bases of identities of the corresponding varieties and their standard notation

(if such a notation exists):

(Th,T5,T3) Basis of identities Notation
(11, I, II3) 2 S
({0},10,,1I3) 2123 s?
({0}, B, 113) 2129 + 222, (or 22%) Uy
({03},4,0C) 2129 — 2221, 21222324 wAA St
({0}, A,1I5) 2120 — 2221, 212223 wANS?
({0},{0},T3%) Ts U{z1202324}

Here T3 runs over the set of all K S3-submodules of II3; it is known
that the cardinality of this set is equal to the cardinality of the ground field
K. Thus, there exist five “sporadic” 4-stable varieties and one series of

cardinality | K| consisting of varieties intermediate between S and S*.
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A careful reader will notice that in the above list the trivial variety
£ is missing. This is not accidental, for at the very beginning of §1.3 we

excluded this variety from considerations.

1.5. A stable nonhomogeneous variety

Assume, for the present, that char K = 0. In this situation Theorem
1.3.1 applies with full force and yields a substantially complete picture. But
new questions continue to appear.

1. Is every stable variety homogeneous?

2. Is it true that every variety, definable by homogeneous identities, is
homogeneous?

3. Is it true that if a variety of algebras M is defined by identities
{ui(z1,...,2n)}, then the variety of representations M* is defined by the
identities {u;(z, —1,...,2, —1)}?

Partial answers to these questions are given by Proposition 1.2.4 and
Theorem 1.4.2, but in their general form they remained open for about ten
years.? Especially intriguing, in view of the results of §1.3, was the first
question. Indeed, if it were answered in the affirmative then, by Corollary
1.3.2, the study of stable varieties of group representations in zero charac-
teristic would be completely reduced to the study of nilpotent varieties of
algebras. Fortunately for the theory of varieties of group representations,

each of the above questions has a negative answer.

1.5.1. Theorem (Vovsi [98]). Over an arbitrary field of characteristic
# 2, the variety Xo defined by the identities

u(z1,22) = 2212221 — 212521, v(21,%2,T3,24,25) = 2122232425
does not satisfy the identity 2z,292) and is definable by homogeneous iden-
tities.

Since Xy satisfies v, it is stable of class 5. Since X satisfies u but
does not satisfy the homogeneous component of degree 3 of u, it is not

2Moreover, it was not even known whether a variety, which is simullaneously stable
and definable by homogeneous identities, is necessarily homogeneous (see [24, p. 22]).
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homogeneous. This answers questions 1 and 2. Now consider the variety of
algebras M defined by v and v. Then the variety of representations M
must be homogeneous, whence M* # X,. This yields a negative answer to
the last question.

The proof of Theorem 1.5.1 consists of a number of lemmas. We begin

by proving its last assertion.

1.5.2. Lemma. The variety Xy can be defined by the homogeneous
tdentities

3 2 2 2 2 2 2
21y, 2125 + 252 —2{22 — 222, 2123 + 2521 + 221292,

2.2 2.2 2.2 2 (1)
21222123, 23212221, 2{25 — 232y, 21%Z3 + 212521, Z212223242s.

Proof. We show first that the identities (1) are satisfied in Xy. The
symbol = will denote equality modulo Id Xy. Substituting z; for z5 in
u(zy,z2), we have 228 — 2{ = 0. Multiplying this equation by z1, we get
z$ = 0 and, consequently, 2z} = 0. Multiplying u(z,z2) by z3 on the right,
we get 21222123 = 0, and by 23 on the left, z32,2221 = 0.

Now we apply the endomorphism z; — z,z; to u(z;,z2) and use the

equations just derived. We obtain
0=2(z1+22+z122)22(z1 + 22+ z122) — (21 + 22 + zlzz)zg(zl + 23 + 2129)

— 2 2 2 2
=2z12021 + 2521 + 212521 + 2125) — 21257
— 2 2 2 2
= (2212221 — z212521) + 2(2321 + 2125 + 212521).

Consequently,

2125 + 252, + 1232 = 0. (2)
iFrom (2) and the identity 22252, — 21222, = 0, we have z 22+ 222 +
221252) = 0. Multiplying by z; on the left, we have 2222 + 2,222, = 0, and
by 21 on the right, z%zf + z z%zl = 0. In the latter we transpose 2; and z,
and compare the equation obtained with the next-to-last equation, which
yields z,2z321 = 222} 2z;. But then, according to (2), we have 2,23 + 2221 —
232y — 2322 = 0. Furthermore, it is now clear that 2222 — 2222 = 0. Thus,
the identities (1) are satisfied in Xq.
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Conversely, let us show that the identities (1) imply the identity u(=z,
z2). Let I be the verbal ideal of K F generated by the words (1), and let now
= denote the equality modulo I. Applying the endomorphism z; — z;z2

to 2z} = 0 and using formulas (1), we get

_ 3 _ 2

0=(z1+ 22+ 2122)° = (21 + 22 + 2122)°(21 + 22 + 2122)
— 2 2 2 2
= (21 + 2221 + 212221 + 2122 + 25 + 2125 + 2722 + 222122)(21 + 22 + 2122)
_ 2 2 2 2 2 2.2 2
= 2927 + 21222y + 252y +21252) + 2722 + 222122 + 2125 + 2725 + 222722
— 2 2 2 2 2 2
= (2722 + 2221 + 2227 22) + (2321 + 2125 + 21252, )+

2.2
+ (212221 + 222122 + 27 23)

— 2 2 2.2
= (—2222129 + 2227 22) + (2212221 + 212521) + (212221 + 222122 + 2{ 23)

= (%).

It follows from (1) that 2,292y = 22212, and —2222 = 212221 = 23222,

Applying these equations together with (1) to (), we see that
(*) = —u(z1,22) — u(z1,22) + u(21,22) = ~u(z1,22)
and so u(z1,z2)=0. O

Let V be the space of dimension 10 over K with basis eg,e,...,eq.
Take in M,o(K) two matrices

1 1
a1 =1+ ez +e2q4 + €36 — '2-659 - '2-650 + €60 — €78 + €79 + €70 — €59 — €30,

1
az =1+ e13 +e25 + e37 + eq9 + €58 — 5€69 — 5€60 + €99 + €90 — €09 — €00,
where 1 is the identity matrix and the e;; are the usual matrix units. It
is easy to see that the matrices a; and a» are invertible. Let G = {a,,a2)
be the subgroup they generate in GL1o(K) and let p = (V,G) be the nat-
ural representations of G. Theorem 1.5.1 will be completely proved if we

establish that p satisfies the identities u and v, but does not satisfy 2z,2,2,.

1.5.3. Lemma. The representation p satisfies the identity v, that s,
p s 5-stable.



1.5. A STABLE NONHOMOGENEOUS VARIETY 63

Proof. For an arbitrary subset M in V, let (M) be its linear span.

Consider the following series of subspaces of V:
<0) - (eg + eo) - <68169)elo) C <e4)651 €6, €7,€8,€9, elO) C V'

A straightforward verification shows that all terms of this series are invariant
with respect to a@; and a,, and on all its factors a; and a, act as the identity.
Therefore p is 5-stable. O

All subsequent calculations are carried out in the algebra M;o(K). For

an arbitrary matrix ¢ € Mio(K), set § = g—1. It follows from Lemma 1.5.3
that

5192939495 = 0 (3)

for any ¢g; € G. We also note that if w = w(®;,...,&,) is an element of K F,

then the substitution of matrices g; € G for variables z; in w is equivalent

to the substitution of the matrices g; for the differences z; = z; — 1.

1.5.4. Lemma. The following equations are true:

al = e1s +e30 + €79 + €70, (4)
a3 = e17 + €28 + eq9 + €40, (5)
G187 = €15 + €29 — %639 - %630 — €69 — €60, (6)
281 = €16 — %629 - 5620 — €38 + €39 + €30 — €59 — €50, (7
al =as =0, (8)
a1028; = G28102 = —1619 - l‘310, (9)

2 2
3,32 = €18 + €20 + €20, @381 = —e13 + €19 + €10 — €29 — €20, (10)
ﬁzﬁf = e19 + €39 + €30, ﬁfﬁz = —e19 — €39 — €30, (11)
81358, = 828382 = —ey9 — €10, (12)
4;8;8;@, = @;a;ax8; for any 1,5,k € {1,2}, (13)
alal = ala® = eyo + er0- (14)
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Proof can be done by direct calculation. For example,

1
G182 = (€12 + €24 + €36 — '2-659 - 5650 + eco — €78 + €79 + €70 — €39 — €g9)-

1 1
(€13 + €25 + €37 + €49 + €58 — —€50 — —€60 + €99 + €90 — €09 — €00 ) =

2 2
1 1
= €15 + €29 — '2‘639 - '2‘630 - '2‘659 + e79 — ego — '2‘650 + e70 — eso+
1
+§e59 —eg9 —ero + es9 + '2-650 — ego —e70 + €s0 =
1
= e15 + €29 — 5639 ~ 530 — €69 — €60. O

1.5.5. Corollary. The representation p does not salisfy the identity

221292,
Indeed, according to (9) we have 2d,828; = —ej9 —e10 #0. O
1.5.6. Lemma. Let

w(z1,22,23,24) = Z Qo2g(1)20(2)20(3) Zo(4)
€Sy
be a word from KF multilinear in 21,22, 23,24. This word is an identity
of p if and only if it vanishes on the generators a, and as of G, i.e. when

w(ai,aj,ar, a1) = 0 for any i,7,k,1 € {1,2}.

Proof. Assume that the condition of the lemma is satisfied, and let
91,92, 93,94 € G. It suffices to show that w(g1, 92, 93,94) = 0. Each ¢; is a

-1 -1,
product of the elements a1,a3,a7 ,a,

gi = aijtail’ .. .a:;:" (:=1,2,3,4; &; = £1, a;; € {a;,a2}).
Using the formulas

gh=g+h+gh, a'=-a;+al(i=1,2) (15)



1.5. A STABLE NONHOMOGENEOUS VARIETY 65

(the latter follows from (8)), it is not hard to see that g; = ;i + -+ +
€ik;Gik; + monomials of degree > 2 in &,,az. Therefore from the multilin-

earity of w it follows that
w(glyg2ag3ag4) = Z aaga(l)ga(2)ga(3)ga(4)
€S,
= Z 6lpe.?qf:i'r'eﬁl.sw(alp, A24,03r, a43)+
+ monomials of degree > 5 in a;,a,.

Here w(a1p,a24, a3y, ass) = 0 by the condition, but monomials of degree > 5

are equal to 0 according to (3). Therefore w(g:,92,93,94) =0. O

1.5.7. Lemma. The following multilinear words are identities of the

representation p :

wy (21, T2,23,84) = 21222324 + 232221 24,

wa(Z1,22,T3,T4) = 21222324 + 21242322,

w3(T1,T2,T3,T4) = 21222324 + 23242221 + 24222123 + 23222, 24,
we(T1, Ta, T3, Tq) = 21222324 — 21232224 + 24222321 — 24232221,
‘ws(zl,zz, 233,134) = 21242223 + 24212223 + 23222124 — 23222421+

+ 221232024 + 22423202].

Proof. Since the proofs of all five cases are similar, we restrict our-
selves to wi. In view of Lemma 1.5.6, it is sufficient to prove that w;(a;, a;,
ax,a;) = 0 for any 4,j,k,! € {1,2}. If some three of the indices ¢,j,k,! are
pairwise equal then, by (13), all monomials of the expression w1 (a;, a;, ax, ar)
vanish. Therefore we may assume that two of the indices 7,7,k,l equal 1,

and the remaining two equal 2. Then six cases are possible:
Vi=j=1k=1=2 4)i=j=2k=1=1,
2)i=k=1,j5=1=2, 5Yi=k=2,j=1=1,
Ni=l=1,35=k=2, 6)i=1=2,j=k=1.

Using the identities (12)-(14), in the first three cases we have

e
wy(@a;, a;,ar, a1) = @743 + G878, = 0,
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wy(a;, a;, ar, 1) = 81828182 + 81828182 = 0,
wi(ai,a;,ar, ) = a,a58, + asa: = 0.
The remaining three cases are obtained from those already examined by
transposing the indices 1 and 2. It follows from (12)—(14) that under this
transposition the values of the corresponding monomials do not change:
4;8;8,81 = 8r(i)@r(;)@r(k)@r() Where 7 = (12). Thus, also in these three

cases wy(@a;, a;,0,, a;) =0. O

1.5.8. Corollary. The words 2122223, 21222322, 2222 + 202229, 2222 +

21222, are identities of the representation p.

Proof. It suffices to apply the previous lemma and the obvious equal-
sy 1 _ 1 2,2
ities 21222123 = Jwi(21,%2,21,23), 21222322 = Fw2(21,22,23,%2), 223 +

2 2.2 2, _
21252) = wa(21,21,%2,%2),21 25 + 222722 = w1(Z1,21,22,22). O

1.5.9. Lemma. Let wg(z1,z2,23) = 2(212223 + 232221 + 21232221 +
23222123) — 212225 — 23232z;. Then we(a,b,c) = 0 for arbitrary a,b,c €

{al y a2, al_l ) a2_1 }

Proof. 1. We show that we(a,b,c) = 0 for any a,b,¢ € {a;,az}. If all
three elements a,b,¢ are equal to the same a;, then we(a,b,c) = 0 by (8).
It remains to consider the cases when two of the elements a,b, ¢ coincide
with some a@; and the third equals a; # a;. There are three such cases:
a=b#c,a=c#b a#b=c. Using Lemma 1.5.4, we analyze these

cases respectively:

=1]

a) we(ai,ai,a;) = 2(aa; + a;a} + a;a;a% +a;ala;)-
- aja; — @:aj = 2(afa; + a;a] + a;ala;) =
=2(ey9 + €10 — €19 — €30) =0,

b) we(ai,a;,a;) = 2(q;8;a; + 8:@;a; + aj8;8 + a:d;az)—

2‘ai =

~ 8;858; — 6;828; = 48:8;3; — 28;3;

j 3
= —2e19 — 2€10 + 2€19 + 2€30 = 0,

Y = 2682 4 825 4 5528 + 828.5) — &
¢) we(aj,ai,a;) = 2(a;a; + aja; + @;a;@; + a;a;a;) — a;a;

(a2 4 aas 4 5.a%a) =
= 2(a;a; +aja; + a;a;a;) =

= 2(e19 + €10 — €19 — €10) = 0.
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2. Let us show that for arbitrary a,b,¢ € {a;1,a2}
we(a™?, b, ¢) = we(a,b7!,¢) = we(a,b,e7!) =0. (16)
By Lemmas 1.5.4, 1.5.7 and formulas (3) and (15), we have:
a) we(a™',b,¢) = 2[(—a + a®)be + cb(—a + a*) + acba—
— cbag] + ab’c + cb*a = [—2(abc + cba + acha + cbac) + ab’e+
eb?a) + 2(a’be + cha® + 2acha) =
= —we(a,b,¢) + ws(a,b,¢,a) =0,
b) we(a,b7!,¢) = 2[a(—b+b%)c + &(—b + b*)a + ae(—b + b%)a+
+ &(—b + b*)ac] — a(—b + b*)* — g(—b+ b°)%a =
= —2(abe + cba + acha + cbac) + ab’c + ¢b’a =
= —wg(a,b,e) =0,
¢) we(a,b,e) =2[ab(—c +¢%) + (—¢+ &)ba+ a(—c + &*)ba+
+ (=& + %)) - ab*(—c + &%) — (¢ + &*)b*a = [ 2(abc + cha+
+ acha + cbac) + ab’c + ¢b’a] + 2(abe® + ¢*ba + 2cbac) =
= —we(a,b,¢) + ws(e, b, a, ¢) + 2wy(e,b,a,¢) = 0.
Thus (16) is proved. The proof of the lemma can now be finished by a

simple combination of the examined cases 1 and 2. O

1.5.10. Lemma. we(a,g,h) = 0 for any a € {a;,a2,a7",a5'} and
g,h €G.

Proof. 1. We show that we(a,b,h) = 0 for any a,b € {a;,a2,a7"’,
a;'}, h € G. Denote by I(h) the length of a shortest presentation of h
as a product of the elements af"l (¢ = 1,2), and apply induction on (k).
If (k) = 1, then everything follows from Lemma 1.5.9. Let I(k) = n,
and suppose that for elements of shorter length the required fact is proved.
Present k in the form h = hyhs, where I(h;) < n. Then

ws(a, b, h) = 2[65(’_7,1 + ’_'Lz + ’_'1,1’_7,2) + (’—ll + 712 + ’_'Ll’_'l,z)l_)(_l-F
+ (_1(’_7,1 + ’_'Lz + 1_11712)5& + (’_7'1 + ’_7,2 + ’_7,1 ’_lz)l_)(_l(l_ll-l-
+ ’_12 + ’_11’_7,2)] - (_ll_)z(’_l] + ’_'Lz + ’_'1,1’_7,2) - (’_'1,1 + ’_7,2’_7,1’_7,2)32(_1
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+ hobahy) — ab’hy — @b*hy — hyb%a — hob’a
= we(a,b, h1) + we(a, b, k) + @bhykhy + hyhoba + hybah, + hobah,
= we(a,b, k1) + we(a, b, ha) + ws(a, b, hy, ko).
Since we(a, b, hy) = we(a, b, h2) = 0 by the induction hypothesis and ws(a, b,
hi, h2) = 0 by Lemma 1.5.7, it follows that we(a,b,k) = 0.
2. Now we can prove the lemma in general, applying induction on {(g).
If I(g) = 1, the proof follows from the above. Assume that {(g) = n and for
elements of shorter length the lemma is proved. Then, presenting g in the
form g = g192, where l(g;) < n, we have
wo(a,g,h) = 2[a(gr + 32 + 5192)h + A(G1 + 2 + }1F2)at
+ah(g1 + 32 + 5192)a + h(@1 + G2 + 5192)ak]-
— (g1 + 92 +5192)°h — h(G1 + 32 + §132)%a
= we(a, g1, k) + we(a, g2, k) + 235192k + 2hg1 520~
~ @132k ~ aG2g1 b — R§132a ~ hgadna
= we(a,91,k) + we(a, g2, k) + wa(a,g1,92,h) =0. O

1.5.11. Lemma. The word u(z1,22) = 22,222, — 21222, is an identity

of the representation p.

Proof. 1. We show that u(a,b) = 0 for any a,b € {al,az,al_l,az_l}.
It follows directly from (4)—(14) that u(a;,a1) = u(ay,a2) = u(az,a;) =
u(az,az) = 0. Further, for any ¢,j € {1,2}

u(ai, a;) = 2a;(—a; + a3)a: — a:(—a; + a7 )’a;

2
%

= —28;8;8; + 28;a38; — ;8
= ~u(ai, ¢;) = 0,
u(ar?, a;) = 2(—& + a?)a;(—a; +a;) - (—a& + af)aja; + a;)

2a;

2 EEi B — BeE G — B2E.0) — Gid
= 2(a;a;a; — a;a;a; — @;a;a;) — 8;8;

= 28,8;8; — 8,8,8; = u(a;,a;) = 0.
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Similarly, u(a;!,a; ") = —u(ai,a;) = 0.

2. We show that u(a,h) = 0 for any a € {a,,a2,a7",a;'}, h € G. For
I(h) = 1 we use the previous argument. If h = hyh,, where I(k;) < I(R),
then

u(a,h) = 2a(ky + ke + Ryh2)a — (k) + k2 + RiRe2)’a
= 2(@h,a@ + dhya + Gh1ho@) — @hia — ah, hea — ahoh,a — ahla
1
= u(a,hy) + u(a, k) + §w4(a, ki, he,a).

The proof is completed by induction.

3. Now let us show by induction on I(g) that u(g,h) = 0 for any
g,h € G. If [(g) = 1, this follows from the above. Assume that {(g) = n
and that for elements of shorter length the lemma is proved. Then g can be
written in the form g = af, where @ € {a;,a2,a7",e;'} and I(f) =n - 1.

Consequently,

u(g,h) =2(a+ f+af)h(a+ f+af)— (a+ F+af)R*(@a+ F +af)
=2(aﬁa+ﬁza+aﬁza+aﬁf+f f

\
ol
S
o
S
+
ol
R
ol
hy
+

3
= u(a, h) +u(f,h) +[2(@8hf + fha +afha +
— ah?f — fR%a] + 2afhf + 2ahaf
= u(a,h) + u(f,h) + we(a, h, f) + 2afhf + 2ahaf.
Applying the induction hypothesis, Lemma 1.5.10 and Corollary 1.5.8, we
eventually obtain u(g,h)=0. O

Theorem 1.5.1 follows directly from 1.5.2, 1.5.3, 1.5.5 and 1.5.11. O

It is interesting to note that the variety Xy is, in a sense, a minimal
example of nonhomogeneous stable variety. To make this assertion more
precise, suppose that I is a nonhomogeneous verbal ideal which is stable
of class n (that is, I O A™). Then there exists u = Y2 u;) € I such
that u(;) ¢ I for some i. Since u is a sum of a finite number of normal

words which all are consequences of u, we can assume without any loss of
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generality that v is a normal word itself. Note that if we replace the ideal I
by its verbal subideal Iy = Id(u, A™), then all the properties are preserved:

Iy 2A" wuwel,, U(s) ¢ I.
This leads to the following definition.

Definition. A normal word u = u(z1,...,2m) = X i0q u(i) 19 called a
special word of type (n,m,k) if it involves m indeterminates, the weight®

of u is equal to k, and if for some ¢
uy € Id(u, A™).

It follows from the above that the problem of finding a nonhomogeneous
stable variety is equivalent to finding some special word. For example,
Theorem 1.5.1 actually states that u(z;,z2) = 2212221 — 21222, is a special
word of type (5,2,3), since for this word we have m = 2, k = 3 and u(3) =
2212521 ¢ 1d(u,A®). The essence of the following theorem is that there
are no spectal words of smaller types. More exactly, note that the set of
all triples (n,m,k) is totally ordered under the left lexicographic ordering.
Denote this ordering by <.

1.5.12. Theorem (Vovsi [99]). Let charK # 2,3. If (n,m,k) S
(5,2,3), then there are no special words of type (n,m, k).

Sketch of Proof. First, since all 4-stable varieties are homogeneous
(Theorem 1.4.2), for any triple of the form (4,m,k) there are no special
words of the corresponding type. Next, it is easy to show that there are no
special words of type (n,1,k), where n and k are arbitrary positive integers.
Take an arbitrary word v = 3 a;z? (a; € K) of weight k in one variable,
then aj # 0. Let = denote equality modulo I = Id(u, A™), then

k+1 + 1

u = apz® + agqq2 veotan_12™

=2F(ap + arprz 4 - Fap 2" ) =0, (17)

3Recall that the weight wtuy of an element u € KF is the number k such that
u € AF but u ¢ AF+HL,
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Denote agy12 + -+ + an_12""*"1 = b, Then ap + b, being a sum of an
invertible element and a nilpotent element, is invertible modulo I. By (17),
z*¥ = 0. Therefore all the homogeneous components of u belong to I, whence
u is not a special word.

It remains to prove that there are no special words of types (5,2,1) and
(5,2,2). In the first case it is trivial, since a normal word of weight & with
more than k variables simply cannot exist. But the second case is much
more difficult and requires several pages of rather tiresome calculations.
For the details we refer to [99].

1.6. Stability of unipotent varieties.

A well known theorem of Kolchin [42] states that if G is a matrix
group over an arbitrary field and (g — 1)® = 0 for every g € G, then there
is a basis in which all matrices from G are simultaneously unitriangular.
In terms of varieties or group representations, this theorem means that if
a finite-dimensional representation is unipotent, then it is stable, There
naturally arises a question whether the requirement on the representation
to be finite-dimensional is essential, i.e. is it true that an arbitrary unipotent

representation over a field is stable? In other words, does the identity
yo(z—1)"=0

imply the identity
yo(z;—1)...(en—-1)=0

for some N = N(n)?

If the ground field has a prime characteristic, the negative answer is im-
mediate. Indeed, let char K = p and let G be an infinite group of exponent
p, then it is easy to see that Regy G is unipotent but not stable. However,
over a field of characteristic zero this question known as the Unipotency
Problem has remained unsolved for a long time. It was discovered, in par-
ticular, that it is equivalent to a well known problem on Lie algebras with
the Engel condition: is it true that every Lie algebra over a field of charac-

teristic zero satisfying some Engel identity is nilpotent?
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Recently E. I. Zel’'manov [105] has solved the second problem in the
affirmative. As a result, the Unipotency Problem has been also solved in

the afhrmative.

1.6.1. Theorem. A unipotent representation over a field of charac-

teristic zero is stable.

In the present section this statement will be proved “modulo” Zel’'ma-
nov’s theorem. The reader interested in the proof of the latter is referred
to the original paper [105] or to Chapter 6 of [43].

The transition from Engel Lie algebras to unipotent group representa-
tions is well known and can be realized in several ways. We will follow the
approach of Heineken [30]. Thus, let p = (V,G) be a representation over
a field of characteristic 0 satisfying the identity (z — 1)*. Our aim is to
prove that p is stable. Without loss of generality, we may assume that p is
faithful and G C Endg V. As usual, (Endg V)~ denotes the Lie algebra on
the vector space EndgV with respect to the operation [z,y] = zy — y=.

For any g € G consider in EndgV the element

(g—1)P  (¢—1)°
-

logg=(g—1)

By assumption, (g — 1)® = 0, therefore this sum is finite and (log g)* = 0.
On the other hand, for an arbitrary nilpotent element a from EndgV (for
example, @ = log g) let

a?
expa=1+a+-—2—+....

A straightforward verification shows that
exp(logg) =g (1)
and that for an arbitrary integer r
log(¢"™) = rlog g. (2)

Denote by L the subset of EndgV consisting of all linear combinations of
the elements logg, g € G, with rational coeflicients. The following three
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lemmas were proved in [30] (the last of them is actually a version of a result
of Higgins [32]).

1.6.2. Lemma. " =0 for every l € L.

Proof. We have to show that if a; = logg; for some g1,...,9m € G

and r; are rational numbers, then
(riag + -+ rman)" =0.

Multiplying the r; by their common denominator, we may assume that all
the r; are integers. By (1) and (2),

n—1 k

. ria;
gi = €Xp ai, g;_r. = exp(riai) = Z (ITt)’

k=0

whence

g=g1'vgm=QQ+ra+...)...(l +rmam +...)
=1+A1+42+ -+ A@-1)m

where A; is a homogeneous expression of degree i in a1,...,am. Note that
Ay =ra 4+ +rman.

Since the representation p = (V, @) is n-unipotent, it follows that
(A + A2+ +Aoym)"=(g—-1)" =0.
Expanding the left-hand side, one can rewrite this equality in the form
B,+Bp+:--+B=0 (3)

where t = (n — 1)mn and B; is a homogeneous expression of degree i in
@1,...,8m. In particular, B, = AT. The equality (3) remains valid if we
multiply all the a; by some positive integer k (that is, if we replace each g;
by g¥).

Thus there arises the following system of linear equalities in “indeter-

minates” B;:

kan+kn+1Bn+1+"'+ktBt=0 (k:l,...,t—n+1).
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The determinant of this system is actually the well known Vandermonde
determinant; it is nonzero and therefore all the B; must be equal to zero.

In particular, B, = AT = (r1¢; + -+ + rmam)"” = 0, as required. O
1.6.3. Lemma. L is a rational Lie subalgebra of (EndgV)™~.

Proof. It suffices to show that if ¢« = logg and b = logh for some
g,k € G, then [a,b] € L. By (1) and (2),

n—1 a,' n—lbj
g=expa=2i—', h=epr=2,—|.
il !

=07
Therefore
log(gh — 1) = Z U™ g -1yt
n—- ne1 : el .. k
e (Z—.) >3- @
k=1 i=0 =0

where the expression Ay, is homogeneous of degree p in ¢ and homogeneous
of degree ¢ in b. Now let » and s be arbitrary positive integers. Replacing
in (4) g by ¢" and h by k°® (or, equivalently, multiplying a by r and k by s),
we obtain the system of inequalities

(n—1)*
Z rPs? A,y = log(g™h®) (r,s €N)
Pg=0
in the “indeterminates” A,,. Since r and s are arbitrary, the same argument
with the Vandermonde determinant shows that all the A,, can be expressed
as linear combinations of the elements log(g™h®) with rational coefficients
(by the Cramer formulas), i.e. all the A,, are contained in L. In particular,

Ayy €.L. However, expanding (4), it is easy to calculate that

1 1
Ay = ab— §(ab + ba) = §[a,b].
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Consequently, [e¢,b] = 24,; € L. O

1.6.4. Lemma. Let A be an associative algebra over a field of charac-
teristic zero and let L be a Lie subalgebra of A~ such that A is generated by
L. If L is soluble of class t and I™ = 0 for everyl € L, then A is nilpotent

of class n'.

Proof. a) We proceed by induction on . Let ¢t = 1, that is [I;,l5] =
Lily—1ly =0 for all l),l, € L. By the condition, for arbitrary l;,...,l, € L

and arbitrary integers k1,...,k,
(kaly 4+« + kpl)" = 0.

Expanding the left-hand side of this equality and taking into account that

the elements I; commute, we obtain

S Rk Ay, =0 (5)
my+tetmp=n
where |
n!
— ™My My
Ami = my!. ..mn!l1 ELAS

Since (5) is valid for arbitrary integers ki,...,k,, we again can apply the
standard argument with the Vandermonde determinant (more precisely, we
should apply it n times, as in the proof of Lemma 1.2.1). Eventually we
obtain that all the A,,,...m, are equal to 0. In particular,

Ana=mHh...l,=0.

Thus I...1, = 0 for all [; € L, and since A is generated by L, it follows
that A is nilpotent of class n.

b) Let now ¢ > 1 and assume that for ¢ — 1 the lemma is valid. Since
LY the (t—1)-th derived subalgebra of L, is soluble of class 1, it follows
from the above that

Ve LUV 4.0, =0. (6)

Denote by I the ideal of A generated by L(!"Y) and let A = A/I, L =
(L +I)/I. Then A and L satisfy all conditions of the lemma, but L is
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soluble of class ¢ — 1. By the induction hypothesis A is nilpotent of class
nt~1 = s, that is

VYa; € A: ay...a,€l.

If we prove that
YVu; €I up...u, =0, (7)

it will be established that A is nilpotent of class sn = n?, as required.

c) Thus, let uy,...,u, € I. Since 4 is generated by L, each u; is a sum

of elements of the form
ay .. aplamyy .. ay (le L(t_l), a; € L).
Hence to prove (7) it is enough to show that
01+ Qomol1G11 + v+ Gimyl2a21 « @y oo c@pm, =0 (8)

for arbitrary I; € L(*~1) and a;; € L. First of all, it is easy to see that
(8) can be reduced to equations of the same type in which the number of
factors a;; between I; and l; equals m; — 1. Indeed, l1a;; = [l1,a11] + a1l

and since I' = [I},a1;] € L(*"Y, one can rewrite (8) as

1]
o1 -+ Qomgl @12 ++ A1, l2a2y < a0y« Bome@11ly 12 . Gy, l2agy - =0
[ —— N’
my—1 my—1

where both terms are of desired form. Repeating this argument, one can
eliminate all factors between I; and l;. In other words, instead of (8) it

suffices to prove that
o1 -+ Gomolil2a2y . G2myl3a31 . lnGny oo apm, = 0.

Applying the same argument successively to a21,...,82m,,d31, ..., We even-

tually reduce (8) to the following assertion:
ay...anlile. pamyroiar =0

for all I; € L*™Y and a; € L. But this follows directly from (6). O
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Proof of Theorem 1.6.1. Note first that the Lie algebra L satisfies
the Engel identity of class 2n, that is, the identity

["'[[z’y’]y’]v'-"y]=0' (5)
2n

Indeed,
[z’y] =Ty —yz,

([z,y],y] = zyy — yzy — yzy + yy=,

o= 95y, ],--09] = Z yPzy’.
T pHe=n
For each summand of the last sum either p > n or ¢ > n, therefore by
Lemma 1.6.2 all these summands are equal to zero. Thus L satisfies the
identity (5). By [105], L is nilpotent.
Denote by A the rational associative subalgebra of EndgV generated

byallg—~1,g € G. Then L C A and since

log® g log" g

g—1=-exp(logg)—1 =logg+T+---+ m,
A is generated by L as an associative algebra. By Lemmas 1.6.2-4, A4 is
nilpotent of some class N. In particular, (g1 —1)(g2 —1)...(gn —1) =0

for arbitrary g; € G, whence p = (V,G) is stable of class N. O

It was noted in the beginning of this section that the Unipotency Prob-
lem was, in fact, equivalent to the problem on Lie algebras with the Engel
identity. Therefore there arises a natural desire to find a proof of Theorem
1.6.1 not depending on Zel’'manov’s theorem, thus giving an alternative
proof of the latter. In the remainder of the section we will sketch one idea
which, had it been successful, would have given such a proof immediately.

Consider the variety Uy, = [2"] of n-unipotent representations of groups
over a field K of characteristic 0. In view of the extreme simplicity of
the identity 2%, the following question suggests itself: is ¢, homogeneous?

Suppose the answer is “yes”. Since U, is also a Magnus variety [51], it
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follows from Theorem 1.3.1 that there exists a variety M of associative
algebras such that M® = U,. From the definition of the map « it is clear
that M must satisfy the identity z™ whence, by the well known theorem of
Nagata [66] (see also [35]), M is nilpotent. Applying 1.3.1 again, we obtain
that U,, is stable, as desired!

Alas, our naive hope to solve the problem so easily fails:
1.6.4. Proposition (Vovsi [99]). The variety Us is not homogeneous.

Proof. Denote Us = Id U3 and suppose that U; is a homogeneous ver-
bal ideal. Since U; = 1d(2%), it follows from Lemma 1.2.2 that lin 2* € U;.
The representation p = (V, G) constructed in § 1.5 belongs to the variety X
and, consequently, it satisfies the identity z* (see Lemma 1.5.2). Therefore
it satisfies the identity

1inz3 = Z za(l)za(z)za(;;) = v(:cl,:cz,:ca)
o€S3

as well. On the other hand, using the notation and the formulas (9) and
(11) from § 1.5, we get

v(a1,az,a;) = 2(@ @z + 4,328, + a2a2)

1 1
= 2(e19 —e39 — €30 — -€19 — €10 + €10 + €39 + €30)

2 2
= €9+ e #0,

so that v(z;,22,23) is not an identity of p. This contradiction shows that

U; cannot be homogeneous. O

One particular consequence of this result is that, apart from the variety
X constructed in the previous section, we now have another example of a
stable nonhomogeneous variety of group representations, namely the variety
Us. This example is certainly nicer, but it should be noted that our proof

of Proposition 1.6.4 is essentially based on the properties of X;.



Chapter 2

LOCALLY FINITE-DIMENSIONAL
VARIETIES

One of the most interesting classes of varieties of arbitrary algebraic
structures 1s the class of locally finite varieties. This general principle
applies, in particular, in the theory of varieties of group representations.
However, in the case of group representations, as opposed to more “usual”
algebraic structures, it is natural to investigate two closely related notions:
locally finite-dimensional varieties and, as a special case, locally finite vari-
eties. The present chapter deals with these two classes of varieties.

Throughout the chapter the ground ring K is a field. In §2.1 we es-
tablish a few basic properties of locally finite and locally finite-dimensional
varieties. The main results of §2.2 give a nice and somewhat unexpected
characterization of such varieties in terms of stable varieties of representa-
tions and locally finite varieties of groups. This characterization is based
on a result of Gringlaz [25] and Theorem 1.6.1.

Locally finite and locally finite-dimensional varieties have important
numerical invariants—the so-called order functions—which are studied in
§2.3. The last two sections, §§2.4 and 2.5, are devoted to critical represen-
tations. The material of these sections 1s more or less standard; however,
it has applications specific for the context of group representations. For
example, it implies that over a field of zero characteristic the lattice of
subvarieties of every locally finite variety is distributive (Corollary 2.5.5).

But the major applications of the technique of critical representations
will be presented in Chapter 3. In that chapter we continue to study locally
finite and locally finite-dimensional varieties, keeping in mind one major

theme: the finite basis problem.

79
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2.1. Basic notions and properties

We start with a few simple definitions. A representation p = (V,G)
is called finitely generated if G is a finitely generated group and V is a
finitely generated KG-module. A representation p = (V,G) is called finite
if it is finite-dimensional and the group G = G/Ker p is finite; in this case
the number dimV + |G| is called the order of the representation p and is
denoted by |p| = |(V, G)|. Finally, a representation is said to be locally finite-
dimensional or locally finite if all its finitely generated subrepresentations

are respectively finite-dimensional or finite.

2.1.1. Lemma. Let p = (V,G) be a representation, N a normal
subgroup of G, and let (V,N) be the restriction of the representation p to
N. If(V,N) is locally finite-dimensional (locally finite) and the group G/N
ts locally finite, then p is locally finite-dimensional (locally finite) as well.

P roof. We consider only the case of finite-dimensional (V, N); the sec-
ond case is similar, Let ¢ = (W, H) be a finitely generated subrepresentation
of p. Take its subrepresentation (W, N N H) and the group H/(NNH). The
latter, being a finitely generated subgroup of a locally finite group G/N, is
finite. By the Schreier formula, N N H is finitely generated as well. Further,

since W is a finitely generated K H-module, we have
W=w,oKH+ ..+ 4+w,oKH

for some wi,...,wy. If now #;,...,%,, is a complete system of representa-
tives of (N N H)-cosets in H, then

W=2n:§:(w,'otj)OK[NﬂH].

i=1 j=1

Therefore (W,N N H) is a finitely generated subrepresentation of (V,N).
Since the latter is locally finite-dimensional, W is finite-dimensional, as
desired. O

2.1.2. Lemma. Let p = (V,G) be a representation and let A be a
G-submodule of V such that the corresponding representations (A,G) and
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(V/A, G) are locally finite-dimensional. Then p is locally finite-dimensional

as well,

Proof.It suffices to prove that if H = (hy,...h,) is a finitely generated
subgroup of G and v € V, then dimg(vo K H) < co. Denote by H® the set
of all elements of the form hﬁlhil cee h-i‘1 where 1 < i < r and s <t, and

1

let KH® be the set of all K-linear combinations of elements from H®, All
the sets H® are finite and H = |J2, H®. Therefore the desired assertion
is equivalent to the following: there exists ¢ such that

voKH® =yo KH*Y =... =vo KH. (1)

Consider the quotient representation (V/A,G). Since it is locally finite-

dimensional, we see that for the element ¥ = v + A there exists n such that
5o KH™ =50 KH"Y = ... =50 KH. (2)

Let g1,--.,9k be all elements of the (finite) set H("+V. It follows from (2)
that for every : = 1,...,k

v0g; = a; + wi, where a; € A,w; € vo KH™,

Then
a,-=vog,-—w,'€voKH("+l). (3)

Further, since (A4, G) is a locally finite-dimensional representation, for every

t=1,...,k there exists m; such that
a; o KH™) — g, 0 KH™+Y = | 4)

Now, if m = max m; and h € H(™tY) then by (4) and (3) we have

1<i<

a;oh € a;o KH™Y — 4.0 KH™ C yo KHMtrtD) |

whence vog;h = a;0h+w;oh € vo KH(™*"+1) But elements of the form
gih run over all the set H(™*t7t2)_ Therefore if we set t =m +n + 1, then
voKH® = yo KHOD = ...=yo KH. O
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A variety of group representations is called locally finite-dimensional
(locally finite) if all its representations are locally finite-dimensional (locally
finite).

Examples. 1. Let O be a locally finite variety of groups. It is easy to
see that w@ is a locally finite variety of group representations.
2. Every stable variety is locally finite-dimensional. Indeed, if p =

(V,G) is a stable representation, then V possesses a series of G-submodules
0=A40C A C---CA, =V

such that G acts trivially on each quotient A;;,/A4;. The corresponding
representations (A4;41/A;, G) are, of course, locally finite-dimensional. By
Lemma 2.1.2, p is also locally finite-dimensional.

The collection of examples of locally finite and locally finite-dimensional
varieties can be substantially extended, if we use the following immediate

corollary of Lemmas 2.1.1 and 2.1.2.

2.1.3. Proposition. (i) If varieties X' and Y are locally finite-
dimensional, then the variety XY is also locally finite-dimensional.

(i1) If X is a locally finite-dimensional (locally finite) variety of repre-
sentations , © a locally finite variety of groups, then the variety X x © s
locally finite-dimensional (locally finite). O

It follows from Proposition 2.1.3 and the above examples that if ©
is a locally finite variety of groups, then every subvariety of S™ x O is
locally finite-dimensional, but every subvariety of S x © = w0 is locally
finite. In the next section we will prove that this is actucilly a complete
characterization of locally finite-dimensional and locally finite varieties of
group representations.

We establish now a few simple properties of locally finite-dimensional

varieties. Recall that an algebra over a field is said to be locally finite-

dimensional if each of its finitely generated subalgebras is finite-dimensional.

2.1.4. Proposition. 4 variety X is locally finite-dimensional if and
only if the algebra KF/Id X is locally finite-dimensional.
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Proof. Let X be locally finite-dimensional, I = Id X. Take an arbi-
trary finite subset 4; = {u; + I|i = 1,...,n} of KF/I and show that the
subalgebra generated by this subset is finite-dimensional. Let

Uy = Z Xijfij, where Aj; € K, fi; € F.

Denote by G the subgroup of F' generated by all f;;, and by V the cyclic
G-submodule of K F/I generated by the element I = 1 + I. Consider the
corresponding subrepresentation p = (V,G) of t X = (K F/I, F). Since p
is finitely generated, we see that dimV < oo. It is clear that V is actually
a subalgebra containing the elements #,,...,%,. Therefore these elements
generate a finite-dimensional subalgebra.

Conversely, suppose that K F/I is a locally finite-dimensional algebra,
and let p = (V,G) be a finitely generated representation from X. We show
that dimV < oco. Without loss of generality, one may assume that V is
a cyclic KG-module. Therefore if G is a group with n generators, then p
is an epimorphic image of the representation Fr,& = (KF,/I,,F,). By
0.3.4, (KF,/I,,F,) C (KF/I,F). Since the algebra K F,/I, is finitely
generated, dim (K F,,/I,) < oo and, consequently, dimV < co. O

2.1.5. Lemma. Let D be a class of representations. If the variety X =
var D ts locally finite-dimensional, then all finitely generated representations
from X belong to the class VQSD, D.

Proof. Let p = (V,G) be a finitely generated representation from &
and let 5 = (V,G) be its faithful image. Then p € QSCD, so that there
exists ¢ = (W, H) € SCD with an epimorphism ¢ — p. The representation
o can be also chosen to be finitely generated, and therefore dim W < oo.

By the choice of ¢ = (W, H), there exist representations 7; € D, i € I,
such that ¢ C ﬁieITi = 7. Since W is finite-dimensional, there is a finite
subset Iy of I such that the natural projection 7 : 7 — ﬁielo"" is injective
on W. Therefore the restriction 7 : ¢ — ¢™ is a left epimorphism of the
representation ¢ = (W, H) onto ¢™. Since 6" € SD¢D, it follows that
o € VSDyD, whence p € QVSDyD and p € VQVSD,D. Using an easily
verified relation QV < VQ between the closure operations V and Q, we
obtain p € VQSDoD. O



84 2. LOoCALLY FINITE-DIMENSIONAL VARIETIES

2.1.6. Proposition. If X is a locally finite-dimensional variety, then

the class of all locally finite representations from X is a subvariety.

Proof. Let D be the class of all finite representations from X and
Xo = var D. It is clear that all locally finite representations from X belong
to Xo. Further, choose a finitely generated representation p in Xp. By
the above lemma, p € VQSDy D. Since D is closed under V, Q, S, Dy, it
follows that p € D, so that p is finite. Therefore X consists of locally finite

representations. [

A representation is called locally stable if all its finitely generated sub-
representations are stable. For example, an arbitrary representation of a
locally finite p-group over a field of characteristic p is locally stable (this
follows, e.g., from [5]). According to Example 2 above, locally stable repre-

sentations are locally finite-dimensional.

2.1.7. Proposition. If X is a locally finite-dimensional variety, then

the class of all locally stable representations from X is a subvariety.

Proof. Denote by D the class of all stable representations from X and

repeat the proof of the previous assertion. O

2.2. Characterization of locally finite and locally finite-
dimensional varieties

The purpose of the present section is to prove the following theorems.

2.2.1. Theorem. A variety X of group representations is locally
finite-dimensional if and only if X C S™ x O for some n and some locally

finite variety of groups O.

2.2.2. Theorem. A variety X of group representations is locally finite
if and only if X C S x © = wO for some locally finite variety of groups ©.

These theorems have the following history. In 1971, Gringlaz [25]

proved that every locally finite-dimensional variety is contained in some



2.2. CHARACTERIZATION OF LOCALLY FINITE VARIETIES 85

X' x O, where X' is a locally stable variety of representations, @ a locally
finite variety of groups. In particular, this implied Theorem 2.2.1 in prime
characteristic and Theorem 2.2.2. But fifteen years later it became clear
that over a field of characteristic zero every locally stable variety is actually
stable (indeed, a locally stable variety is certainly unipotent, and it remains
to apply Theorem 1.6.1). Thus Theorem 2.2.1 was completed.

In proving Theorems 2.2.1 and 2.2.2 we follow [25]. First, let us prove

several auxiliary facts.

2.2.3. Lemma. If X is a locally finite-dimensional variety, then there
exists a polynomial p(t) such that for any representation (V,G) from X the

eigenvalues of any g € G are roots of this polynomial.

Proof. Let Fr1 X = (KF,/I,,F)) be a free cyclic representation of
rank 1 of the variety X (here F) is an infinite cyclic group with a gener-
ator z). Since X is locally finite-dimensional, the space KF, /I, is finite-
dimensional. Regarding z as a linear operator of this space, denote by (1)
its minimal annihilating polynomial. Further, for any ¢ € G let A be an
eigenvalue of g, and let v € V be a corresponding eigenvector. Then the
cyclic representation p = (v o K(g),(g)) is finite-dimensional, and if f(¢) is
the minimal polynomial of the restriction of the operator g to the subspace
vo K(g), then f(A) = 0. We show that f(¢) divides ¢(¢). To do this, it
suffices to show that ¢(g) annihilates the space v o K(g).

Since Fr; X = (KFy /I, F1) is a free representation of X with free gen-
erators z and 1 = 14 I}, the map 1 — v, = — g extends to an epimorphism
of representations u : (KFy/I,,F;) — (vo K(g), (g)). But ¢(z) annihilates
K F,/F,, therefore o(g) annihilates v o K(g), as required. It follows that
f|w, whence p(X) =0. O

2.2.4. Lemma. If X is a locally finite-dimensional variety, then the
variety of groups generated by all finite groups admitting a faithful repre-

sentation in X 1is locally finite.

Proof. Denote by O the class of all groups satisfying the above con-
dition. Since var @ = QSCO, it suffices to show that CO consists of locally

finite groups.
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Let G; € O(i € I), G = ﬁ.‘elGi and let H be a finitely generated
subgroup of G. We have to prove that H is finite. For each ¢ € I pick in X
a faithful representation p; = (V;, G;) of the group G;. Let n; = |G;| and let

(n¢

ggl), cees§; =Y be all nonunit elements of G;. For arbitrary j = 1,...,n;-1

take an isomorphic copy V‘-(j) of the G;-module V; and let
W; = V-(l) ® V-(z) @D V-(ni_l).

Denote the corresponding representation (W;,G;) by ;. Since the rep-
resentation p; is faithful, for each gEJ) there exists vgj) € Vi(j) such that
vfj) ogEJ) # v‘(’). If now w; = vgl) + vﬁ” +-- 4+ v,gn‘_l) € Wi, then

w; 0 g # w;

for every 1 # g € G;.

Consider the Cartesian product

g = ﬁa’; = ﬁ(Wi, Gi) = (W’ G)

iel icl

and choose in W the element w = (w;) whose components are the w;. Evi-
dently, wog # w for every 1 # g € G. Therefore the cyclic subrepresentation
p=(woKH,H)=(A,H) of ¢ is faithful. Let m; be the natural projection
of ¢ onto ¢;. It induces a homomorphism of p = (A4, H) into ;. If (A;, H;)

is the kernel of this homomorphism, then
p™ = (A/A;i, H/H;)

and so the group H/H; is finite. Clearly [\;c; 4; = 0.

Since pis a finitely generated representation of a locally finite-dimensio-
nal variety X, its domain A is finite-dimensional. Therefore there exists a
finite subset Iy of I such that ﬂielo A; = 0. For each ¢ € I the subgroup
H; acts trivially on A/A;, therefore H* = ;o7 H; acts trivially on every
A/A;, i € Iy and hence on A/[Y;.; Ai = A. Since p is faithful, it follows
that H* = 1 whence

H~H/H — [] H/H;
iclo
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and the group H is finite. O

Now let K be a subfield of a field L. According to § 0.4, we have the

natural maps
v: M(K) - M(L) and +': M(L) — M(K). (1)
The next two lemmas deal with these maps.

2.2.5. Lemma. If a variety X € M(K) is locally finite-dimensional,
then the variety X¥ € M(L) is also locally finite-dimensional.

Proof. Let p = (V,G) € X¥. It is enough to prove that if H is a
finitely generated subgroup of G and v € V, then dimp(v o LG) < oo.
We are given that p, regarded as a representation over K, is locally finite-
dimensional. Therefore dimg (vo KG) < o0, whence the required inequality
follows. O

2.2.6. Lemma. If a variety Y € M(L) is locally stable, then the
variety Y € M(K) 15 also locally stable.

Proof. It suffices to prove that for arbitrary n the free cyclic represen-
tation Frn(y”l) of rank n in Y¥' is stable. Consider first the representation
Fr, ). It has the form

Frny = (LFn/JnaFn)v

where J,, = Id,, )Y is the ideal of identities of Y in the algebra LF,. By
assumption, this representation is stable. Since Idn(y”l) =J. NKF,, we

have

Fro(V") = (KF,/(J» N KF,), F,),

and it is clear that K F,,/(J.NK F,)is a K F,-submodule of LF;,/J,. There-
fore Fr, (") is also stable. O

2.2.7. Proposition (Gringlaz [25]). A variety of group representa-
tions X is locally finite-dimensional if and only if X C X' x ©, where X' is
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a locally stable variety of representations and © is a locally finite variety of

groups.,

Proof. Since a locally stable variety is locally finite-dimensional, “if”
follows directly from Proposition 2.1.3 (ii). To prove the nontrivial part,
note first that we may suppose the ground field K to be algebraically closed.
Indeed, if it is not the case, then we embed K in its algebraic closure L and
consider the maps (1). Let X’ be a locally finite-dimensional variety over
K. By Lemma 2.2.5, X¥ is a locally finite-dimensional variety over L.
Suppose our assertion has been proved over an algebraically closed field.
Then XY C Y x O, where ) is a locally stable variety of representations
over L, O is a locally finite variety of groups. Using 0.4.2, we have

X=X"C(Yx0)” CYy' x0,

where V¥ is locally stable by Lemma 2.2.6.

Thus, from now on K is algebraically closed. Let X be a locally finite-
dimensional variety of group representations over K, X' the class of all
locally stable representations from X, and © the locally finite variety of
groups defined in Lemma 2.2.4. Since X' is a variety in view of Lemma
2.1.7, it remains to prove that X C X' x O. It suffices to show that every
finitely generated representation p = (V,G) from X belongs to X' x O.
Since X is locally finite-dimensional, p is finite-dimensional. Choose in V a

composition series of G-modules
0=AyCA C-+CAn=V (2)

and let H; be the kernel of the naturally arising representation (A4, /A4:, G),
i=1,...,n. Then G/H; can be considered as an irreducible matrix group
over K. Since K is algebraically closed, G/H; is absolutely irreducible.
By 2.2.3, all eigenvalues of all elements from G/H; are roots of some fixed
polynomial. Using a classical Burnside’s theorem (see e.g. [87, p. 254]),
we conclude that G/H; is finite. Hence the ©-verbal subgroup ©*(G) of G
is contained in H; (i = 1,...,n) and therefore in H = NH;. Consequently,
©0*(G) acts trivially on each quotient of (2), hence (V,0*(G)) is stable and
it follows that (V,G) € X' x 0. O
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2.2.8. Corollary. A variety X of group representations over a field of
prime characteristic is locally finite-dimensional if and only if X CS x ©
for some locally finite variety of groups ©.

Proof. To prove the nontrivial part, let X be a locally finite-dimensio-
nal variety over a field K of characteristic p. By 2.2.7, we have X C X' x0,,
where X' is locally stable but @, is a locally finite variety of groups. It is
well known that a group admitting a faithful n-stable representation over
a field of characteristic p is an (n — 1)-nilpotent p-group of finite exponent
(see e.g. [28] or [75]). Therefore it is easy to see that if (V,G) is a faithful
representation from X', then G belongs to a variety @, of locally finite
p-groups depending on X' only. Thus X' C S x 02, whence

XC(Ex02)x 0, =8 x(0:0,)
where the variety ©20; = O is locally finite. O

In particular, since any variety of the form § x ® with a locally finite

O is locally finite itself, we obtain the following rather unexpected fact.

2.2.9. Corollary. Over a field of prime characteristic, every locally

finite-dimensional variety is locally finite. O
We can now complete the proofs of the main results of this section.

Proof of Theorem 2.2.1. If char K = p, the result follows from
2.2.8. If char K = 0, it is enough to note that every locally stable variety is
unipotent and then apply 2.2.7 and 1.6.1. O

Proof of Theorem 2.2.2. If char K = p, the result follows from
2.2.8 again. Let char K = 0 and let X be alocally finite variety over K. By
2.2.7, X C X' x O, where X' is locally stable and O is locally finite. Take
in X an arbitrary faithful finitely generated representation p = (V,G) and
let H = ©*(G). Then G/H, being a finitely generated group of O, is finite.
Therefore H is finitely generated, and it is clear that the representation

(V, H) is finitely generated as well. Since this representation lies in X”, it is
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stable, but since it is faithful, we conclude that H is a nilpotent torsion-free
group (see e.g. [28]). But H must be finite because (V,H) is a faithful
finitely generated representation of a locally finite variety X. It follows that
H = {1}, whence G € © and p € wO. Thus X CwO. O

We conclude this section with a few remarks concerning the cardinal-
itles of the sets of locally finite and locally finite-dimensional varieties of
representations over an arbitrary field K. Denote these sets by M;s(K) and
Mif4(K) respectively. According to a theorem of Ol’shansky [70], there is
a continuum of locally finite varieties of groups. Since the map @ — w0 is
injective, it follows that over any K there is at least continuum of locally fi-
nite varieties of group representations. Further, by a result of Grinberg [79],
the cardinality of the set of subvarieties of $* is not less that the cardinal-
ity |K| of the ground field. All these subvarieties are stable and therefore
locally finite-dimensional. If now char K = p, then, by 2.2.9, all locally
finite-dimensional varieties are locally finite. Thus |[M;¢(K)| > max (¢, |K]|),
where ¢ is the continuum.

On the other hand, since the group algebra K F is of countable dimen-
sion, each completely invariant ideal of K F has a countable basis. It is clear
that there are exactly max(c,|K|) countable subsets in K F, whence there
are at most max (¢, |K|) varieties of group representation over any field K.

Let now char K = 0. Every locally finite variety X is generated by
its finite representations. But over a field of characteristic zero every finite
representation is completely reducible, hence X is generated by irreducible
representations of finite groups. Since the set of such representations is
countable, there are at most continuum of locally finite varieties of repre-

sentations over K. Combining all these remarks, we obtain:
2.2.10. Proposition. Let K be a field. If char K = p, then
My ()| = [Myga(E)| = max (e, |K]),
but if char K = 0, then

|M1f(K)| =c¢ and |M1fd(K)| = ma.x(c,|K|) O
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2.3. The order functions

Let X be a locally finite-dimensional variety and let
Fro, X = (KF,/In, Fy) = (Ex, Fr)

be its free cyclic representation of a finite rank n (where I,, = Id,& =
X*(KFy, F)). Then the number I(n) = dim E, is finite for each n. Thus,
to every locally finite-dimensional variety X one can naturally assign a func-
tion ! = l(n) called the left order function of X. If X is locally finite, then
the number r(n) = |F,, /Ker (Fr,,X)| is also finite. Therefore to every locally
finite variety X one can naturally assign another function r = r(n) called
the right order function of X. Note that always l(n) < r(n).

With a slight abuse of language, we can now say that locally finite-
dimensional varieties are varieties with the left order function, but locally

finite varieties are varieties with both order functions.

2.3.1. Example. Let ©® be a locally finite variety of groups. We
know that the variety of representations w® is also locally finite. Let us
evaluate the order functions of this variety. To do this, we note that if
Fo.(0©) is the free group of rank n in O, then its regular representation
Reg F,(©) = (K[Fn(0)], F5.(0©)) is the free faithful cyclic representation of
rank n of in w® (cf. Example on p.12). Hence if [ and r are the left and

the right order functions of w© respectively, then for each n

I(n) =r(n) = |F(0)|.

The order functions are important numerical invariants of a variety,
giving essential information about the latter. In the present section we
prove, following [93, 95], several results concerning the order functions. The
proofs of these results are not difficult but they sometimes involve rather in-
teresting techniques: free ideal rings, classical properties of periodic matrix
groups, etc.

The first question we are interested in consists in the following. By 2.1.3
(i1), if X is a locally finite-dimensional (locally finite) variety of representa-
tions and O a locally finite variety of groups, then the variety X' x © is also
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locally finite-dimensional (locally finite). Is it possible to express explicitly
the order functions of X x ©® by means of the order functions [ and r of X
and the order function f of © (recall that by definition f(n) = |F,(0)|)?
Let I* and 7™ be the order functions of X x O.

2.3.2. Proposition. If X is a locally finite-dimensional variety of

representations and © a locally finite variety of groups, then

(n) =((n - 1)f(n) + 1)f(n). (1)
In addition, if X # £ is locally finite, then

r*(n) = r((n = 1)f(n) + 1)f(n). (2)

Proof. Take the absolutely free representation p = (K F,, Fy,) and let
H =0*(F,)and A = X*(KF,,H). Then (KF,/A, F,) = Fr,(X x O). By
definition,

1*(n) = dim (K Fn/A). (3)

Let j be the index of H in Fy, then j = f(n). By the Schreier formula,

H is a free group of rank
m=(n-1)j+1. 4)

If fi,...,f; is a complete set of representatives of the H-cosets in Fy,
then K F, can be decomposed in the direct sum of H-submodules KF,, =
HEKH®---® f; KH. The corresponding representations (f; KH, H) are all
isomorphic to the regular representation Reg H. Denoting B = X*(Reg H)

and keeping in mind that verbals permute with direct sums , we obtain

j J
A= B, KF./A=EP f(KH/B). (5)
i=1 i=1
Since H = F,,, we have dim (K F,,/A) = l(m)j. Therefore (1) follows from
(3) and (4).
To prove (2), we first note that, by (5),

(KF,/A, Fo) =(f,-(KH/B)®--- & f; - (KH/B), Fy). (6)
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Next, let G = Ker (K F, /A, F,). We show that G C H. Each g € G can be
presented as g = f;h where h € H. Suppose that g ¢ H, then f; ¢ H. Since
X # £, there is a nonzero element u in KH/B. Then f;u € f; - (KH/B),
but it is clear that (fiu)-(fik) ¢ fi-(KH/B). Therefore (fiu)-(fih) # fiu,
whence f;h ¢ G, contradicting the assumption.

Thus, G C H. It follows now from (6) that G = Ker(KH/B, H). Since
H=F, and B=X*(KH,H), we have |H/G| = r(m). Hence

rX(n) = |F, /G| = |H/G| - |Fo/H| = r(m)j = r((n — 1) f(n) + 1) f(n),

as required. O

In a paper of Ol’shansky [72], the following two assertions on varieties
of abstract groups were proved: (i) there exist distinct locally finite varieties
of groups whose order functions are equal; (ii) there exists a continuum of
locally finite varieties of groups whose order functions are pairwise distinct.
Since for distinct varieties of groups @, and @, the varieties of representa-
tions w®; and wO, are also distinct, these assertions and Proposition 2.3.2

yield:

2.3.3. Corollary. (i) Over an arbitrary field, there exist distinct
locally finite varieties of group representations whose order functions are
equal.

(ii) Over an arbitrary field, the cardinality of the set of order functions

of locally finite varieties of group representations is equal to continuum. O

Let us investigate now the behavior of the order functions under the
multiplication of varieties of group representations. By 2.1.3 (i), if X and
Y are locally finite-dimensional varieties, then their product X'} is also lo-
cally finite-dimensional. The following proposition gives substantially more

precise information.

2.3.4. Proposition. Let Xand Y be locally finite-dimensional vari-
eties of group representations, and let ly,ls and l be the left order functions
of X, Y and XY respectively. Then

I(n) = (n — 1)1 (n)la(n) + l1(n) + l2(n).
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Proof. We use two well known results of the theory of firs (free ideal
rings). Let I = Y*(KF,, F,), then

dim (K Fo/I) = Iy(n). (7)

According to a theorem of Cohn [11, 12], the group algebra K F,, is a fir,
1.e. all its ideals are free K F,-modules. Moreover, it is known that an
ideal of codimension d in K F, is a free K F,,-module of rank (n —1)d + 1
(Lewin [55]). Therefore (7) implies that I is a free K F,,-module of rank
r=(n-1l(n)+1.

Let €;,...,¢, be a basis of I over K F};:

I=¢,KF,® . --®e.KF,.

Denote J = X*(I, Fy), then

J =P eiX*(KFo,Fy), I/J =@ ei(KFy/X*(KFn,Fy,)),

whence
dim(I/J) =rli(n) = ((n — 1lz(n) + 1) l1(n). (8)
By (7) and (8),

dim (K F,)J) = (n — 1)h(n)l2(n) + ly(n).

On the other hand, J = X*(V*(KFn, F)) = (XY)(KF,, F,), that is,
(KFo/J, Fy) = Fry(XY). Therefore dim (K F,/J) = I(n). O

2.3.5. Corollary. If X and Y are locally finite-dimensional varieties
of group representations, then the left order functions of the varieties XY
and YX coincide. O

In particular, for left order functions one can now give another proof of
Corollary 2.3.3 (i), not depending on the theory of varieties of groups. In-
deed, it is enough to take arbitrary noncommuting locally finite-dimensional
varieties X and ) and consider the varieties XY and Y.X.



2.3. THE ORDER FUNCTIONS 95

The question on the right order function of the product of varieties is
considerably more complicated. It makes sense only over a field of prime
characteristic, for it is easy to see that over a field of characteristic 0 the
product of locally finite varieties is never locally finite. So let X and Y
be locally finite varieties of group representations over a field K of prime
characteristic p. According to 2.1.3 and 2.2.9, their product X} is also
locally finite. Denote the right order functions of X, Y and XY by r1, 72
and r respectively. It is natural to ask, how does r depend on r; and r3?
Unlike the case of left order functions, we do not know an explicit formula
expressing » in terms of r; and r2; moreover, it is not known whether », and
ro determine r uniquely. However, we can claim that 7(n) is bounded by
a number depending only on r,(n),r2(n) and, of course, the characteristic
of the ground field. In proving this fact, the following statement plays the

main role.

2.3.6. Proposition. Let p = (E,, F,) be a relatively free cyclic
representation of rank n over a field K of characteristic p. If E,, is finite-
dimensional, then the group Fy,/Kerp is finite and its order is bounded by

a number depending only on n, p and dim E,,.

Proof. a) We may assume that K is algebraically closed. Indeed,
if K is the algebraic closure of K, then it is not hard to see that pg =
(K ®K En, Fy) is a relatively free cyclic representation of rank n over K.
Also, it is evident that

dimg E,, = dim}-{(f( ®Kk Evn), Kerp = Kerpg,

whence the desired fact follows. Thus, in the sequel K is algebraically
closed.

b) Denote F,, /Kerp = G,dim E, = d. The group G can be considered
as a matrix group of degree d. By Lemma 2.2.3, there exists a polynomial
@ of degree < d such that the eigenvalues of all matrices from G are roots
of p. Since the number of these roots does not exceed d, the set trG =
{trg|g € G} is finite. It is easy to see that

trGl < (2‘1; h. 9)
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c) Let
0=A4CA C--+-CAL=E, (10)

be a G-composition series in E,. Since dim E,, = d, we have k < d. Denote
by H; the kernel of the action of G on the quotient A;/A;_,. Then G/H; is
an irreducible matrix group of degree < d over K. Since K is algebraically
closed, this group is absolutely irreducible. Using Burnside’s theorem (see

e.g. [87, p.254]) and taking into account (9), we have

d2
e < (1)

Let H = (\H;, then G/H is embeddable in G/H, x -+- x G/H}, whence

i=|G/H| < (2‘1; I)da. (11)

d) Since G is a group with n generators (recall that G = F,/Ker p), it
follows from (11) and the Schreier formula that H can be generated by a

finite number of elements m satisfying the condition

d3
mS(n—l)j+1$(n—1)(2dd_1) +1. (12)

Further, H acts faithfully on E, and stabilizes the series (10). Since it has
m generators and char K = p, it is a finite p-group whose order is bounded
by a number depending only on m,p and d (it is not hard to find this
bound explicitly). By (11) and (12), the order of G is bounded by a number
depending only on n,p and d. O

Note. It was proved in the previous section (Corollary 2.2.9) that a lo-
cally finite-dimensional variety of group representations over a field of prime
characteristic is automatically locally finite. Proposition 2.3.6 is actually a

refinement of this result.

2.8.7. Corollary. For every prime p there ezists a function f, : N —
N such that if X is an arbitrary locally finite variety of group representations

over an arbitrary field of characteristic p, then

Vn e N: r(n) < fp(n,l(n))
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where, as usual, | and r are respectively the left and the right order functions
of the variety X. O

We can now prove the promised result concerning the right order func-
tion of the product of varieties. Let X and Y be two locally finite varieties.
Denote the order functions of X by l; and r,, the order functions of )V by
I, and r,, and the order functions of XY by [ and r.

2.3.8. Corollary. For every prime p there ezists a function g, :
N® — N such that if X and Y are arbitrary locally finite varieties of group

representations over an arbitrary field of characteristic p, then

Vn € N : r(n) < gp(n,r1(n),r2(n)).

Proof. Evidently ly(n) < ri(n) and l3(n) < ra(n). By 2.3.4, the
numbers ry(n) and r2(n) give a bound for I(n); by 2.3.7, they give a bound
for r(n) as well. O

It was already noted that it is still unknown whether there exists an
ezplicit formula expressing 7 in terms of », and r2. In this connection, one

can naturally ask the following concrete question.

2.3.9. Problem. Let X,Y,X',Y' be locally finite varieties over a
field of prime characteristic, such that the right order functions of X and )Y
coincide with those of X' and ' respectively. Does the right order function
of XY coincide with that of X'Y'?

In investigating order functions, it is interesting and natural to estimate
their growth rate. For left order functions, this question is not hard to solve.
Namely, a function f of a natural argument n is said to have polynomial
growth of degree k if f(n) = O(n*) for some natural k. Similarly, f is a

function of ezponential growth if f(n) = O(a™) for some a > 0.

2.3.10. Proposition. Let X be a locally finite-dimensional variety.
If X is stable of class s, then its left order function l has polynomial growth
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of degree < s — 1, but if X is not stable, then the growth of | is at least

exponential,
First we prove one auxiliary fact (cf. [68, 24.51]).

2.3.11. Lemma. Let p = (E,, F,,) be a relatively free cyclic represen-

tation of rank n. If p is not s-stable, then
" (n
dim E,, > 2_:1 (r)’ where m = min(s,n).

Proof. By definition, E, = KF, /I, with I, a verbal ideal of K F,.
Let z,,...,zn be free generators of F,. For every r-tuple of natural numbers
7r = (i(1),4(2),...,i(r)), where 1 <r» <mand 1 <i(1) <i(2) < ... L i(r),
choose in K F,, the monomial

m(Jr) = 2i(1) Zi(2) + - Zi(r)

where, as usual, z; = z; — 1. We prove that the set of all monomials of this
form is linearly independent modulo I,,. To do this, we introduce a linear
order on the set of monomials, setting m(j,») < m(j,) if » < s and letting
monomials of the same degree be ordered in an arbitrary but fixed way.

Suppose there exists a relation of linear dependence
Y aj,m(jp) =0 (13)
Jp

where aj, € K and = denotes equality modulo I,,. We may assume that
all aj, are nonzero. Let m(j,) be the minimal monomial in (13), then (13)

can be rewritten in the form

m(i) = === 3 wim(i). (14
? Gy
In (14) let us substitute 1 for all z;’s not involved in m(j,;). Then all the
m(j,) from the right side will vanish, whence m(j,) = 0, that is, m(j,) =
Z;(1)Zi(2) - - - Zi(r) € In. Therefore the representation p is stable of class r < s,
which is impossible.
Thus dim E,, is not less than the number of monomials of the above
form. But this number, evidently, equals Y- (7). O
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Proof of Proposition 2.3.10. If X is not stable, then it follows
from 2.3.11 that I[(n) > 2" for each n. Let X be stable of class s and let
I, = 1d,X. Then I, O A®, A being the augmentation ideal of KF,.

Consider the series
KF,>ADAY>...D A%

Since elements of the form z;, ...z, + AF! form a K-basis of AF/A*H1

we have

dim(K Fo/A*) = dim(K Fo/A) + dim(A/A?) + -+ + dim(A*~1 /A%)
=1 +n+...+ns_l’

whence I(n) = dim(K F,,/I,) <1+ n+ ...+ n*"!, Thus the function ! has
polynomial growth of degree < s—1. O

Of course, there exist varieties of group representations whose order
functions are of hyperezponential growth: one can mention, for instance,
any variety of the form w® where O is a group variety of hyperexponential
growth (the existence of such varieties of groups follows from results of Peter
M. Neumann [68, 24.51-53]).

We note in conclusion that one can also estimate the growth of right
order functions, but the corresponding results will not have such a finished
form as Proposition 2.3.10. Indeed, by Theorem 2.2.2, every locally finite
variety X of representations is contained in some w®, where O is a locally

finite variety of groups. Hence we have inequalities

l(n) < 7(n) < f(n)

(which become equalities for X = w® — see 2.3.1). If the growth of f is
known, it is possible, at least in principle, to estimate the growth of » using
Propositions 2.3.6 and 2.3.10.
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2.4. Critical representations

In 1960, D.C Cross introduced the notion of a critical group. Very soon
this notion was carried over to other algebraic structures and began to play
a crucial role in the study of locally finite varieties (see e.g. [69, 44-486, 50,
56]). The theory of varieties of group representations is no exception, and
the proofs of many important results in the field are based on the technique
of critical representations.

In the present section, following [92, 93], we establish a number of basic
properties of critical group representations. Most of these properties are
similar to those of critical groups, rings, etc., and therefore several routine
proofs are omitted. It should be noted that although some results of this
section are of independent interest, their applications in the next chapter of

the book will be especially important.

2.4.1. Definition. A representation of a group is called critical if it

1s finite and is not contained in the variely generated by its proper factors.

Here, as usual, by a factor (or section) of a representation p we mean
an epimorphic image of some subrepresentation o of p; this factor is proper

unless ¢ = p and the epimorphism is identical.

2.4.2. Lemma. Every locally finite variety is generated by its critical
representations. Every finite representation belongs to the variety generated

by its critical factors.

Proof. We prove the first assertion of the lemma. If X is alocally finite
variety, it is generated by its finite representations. Let ) be the variety
generated by all critical representations from X. Suppose that X' # ), then
there exists a finite representation in X not belonging to ). Let p be such
a representation of the smallest possible order. The order of each proper
factor of p is strictly less than that of p, hence this factor is contained in Y.
Therefore p is a critical representation, which is impossible in view of the

definition of Y.

The proof of the second assertion is similar. O
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Let p = (V, G) be an arbitrary representation. The socle u(p) = p(V,G)
of p is the sum of all minimal G-submodules of V. If there are no minimal
G-submodules in V', we set p(p) = {0}. On the other hand, denote by
k(p) = r(V,G) the radical of p, that is, the intersection of all maximal
G-submodules of V. If there are no maximal G-submodules in V, we set
k(p)=V.

A representation p = (V, G) is called monolithic if V has a unique min-
imal nonzero G-submodule, called the monolith of p. Dually, p is comono-
lithic if V has a unique maximal proper G-submodule which is called the
comonolith of p. It is obvious that if p has a monolith or a comonolith, then
it coincides with u(p) or x(p) respectively.

Denote by (QS-1)p,(S-1)p and (Q-1)p the sets of all proper factors, all
proper subrepresentations and all proper epimorphic images of p respec-
tively. Let p be a finite representation. According to the above definition,
p is critical if p ¢ var((QS-1)p). Similarly, p is said to be S-critical if
p ¢ var((S-1)p) and Q-critical if p ¢ var((Q-1)p).

2.4.3 Lemma. Every Q-critical representation is monolithic, and ev-
ery S-critical representation is comonolithic. In particular, a critical repre-

sentation is both monolithic and comonolithic.

Proof. The first assertion is routine. As to the second, consider an
arbitrary S-critical representation (V,G) and let W = «(V,G). Then V/W
is a completely reducible G-module. Consider its decomposition V/W =
@D:,(Vi/W) into a sum of irreducible G-submodules. Since V = Y7 V;,
the representation (V,G) is contained in the radical class generated by its
subrepresentations (V;,G) and therefore in the variety generated by the
(Vi,G). If n > 1, all these subrepresentations are proper, and so (V,G)
cannot be S-critical. Therefore n = 1, whence V/W is irreducible and thus
W is the comonolith of (V,G). O

2.4.4. Note. It should be noted that the first part of Lemma 2.4.3 can
be reversed, i.e. a finite faithful representation is Q-critical if and only if it is
monolithic [92]. This is completely analogous to a result from [45]. However,

for the second part of the lemma the converse is not true: there ezists a



102 2. LOCALLY FINITE-DIMENSIONAL VARIETIES

comonolithic representation which is not S-critical. Indeed, let K = Fpn
where p is a prime and n > 2. Consider the representation p = (V,G)

where V is a two-dimensional K-space with basis €;, e2 and

G = UTy(K) = (11( (1’)

acts on V in a natural way. Then p is comonolithic since {e;) is the only
nontrivial G-submodule of V. Take in G the subgroup

1 0
7=(s, 1);

then (V,H) is a proper subrepresentation of p. Clearly S C var(V,H) C
S2. Since there are no intermediate varieties between S and S? (an easy
exercise!), we have var (V, H) = §? and, consequently, p € var (V, H). Hence
p is not S-critical.

Our subsequent considerations are based on the so-called minimal real-
ization of a finite object in a locally finite variety going back to Kovéacs and
Newman [45]. First of all, we state one simple fact which follows directly

from Lemma 2.1.5.

2.4.5. Lemma. Let D be a class of representations. If the variety X =
var D is locally finite-dimensional, then all finitely generated representations
from X belong to the class VQSDy D', where D' is the class of all faithful

images of representations from D,

Proof. Since D C VD', Lemma 2.1.5 implies that X C VQSD,VD'.
The rest follows from the obvious relations DoV < VD,(,SV < V§,QV <

VQ between the closure operations. [

Let now D be a class of finite representations closed with respect to
taking factors, and let var D be locally finite. Take an arbitrary finite rep-
resentation p = (V,G) in var D. By the previous lemma, p € VQSD,D'.
Therefore if 5 = (V,G) is the faithful image of p, then p € QSDoD. Thus

the faithful image of any finite representation from var D can be presented
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as a factor of the direct product of a finite number of faithful representations
from D. We will call this a realization of p = (V,G) in var D.

From all realizations of p = (V,G) in var D, we choose a minimal one in
the following sense. Each realization determines a non-increasing sequence
of positive integers consisting of the orders of factors occurring in the direct
product. If we order these sequences lexicographically on the left, then the
set of all sequences will have the first element. The corresponding realization
is called a minimal realization of the given p = (V,G) in var D. Of course,

it is not uniquely determined. Let us fix one of the minimal realizations of
p=(V,G) in var D:

(V,G) = (B/A, S/R), where (A,R)«(B,S)C H(D;,H,-), (1)

each (D, H;) being a representation from D. The following three lemmas
deal with this fixed realization. Their proofs are standard and straightfor-
ward (cf. [45] or [68, 53.21-26]) and therefore are omitted.

2.4.6. Lemma. Every representation (D;, H;) is critical. O

Denote by m; the natural projection of the direct product [[(D;, H;)
onto its i-th factor (D;, H;).

2.4.7. Lemma. The representation (B,S) is a subdirect product in
[I(D;:, H;), that is, (B,S)™ = (D;, H;) for every i. The representation
(A, R) has the trivial intersection with every (D;, H;). If W is a nonzero
H;-submodule of D;, then WN B #0. O

Since each (D;, H;) is critical, by Lemma 2.4.3 it is monolithic. Let
M; = u(D;, H;) be its monolith. With a slight abuse of language, sometimes
the corresponding representation (M;, H;) will be also called the monolith
of (D;, H;). Recall that representations p and o are said to be equivalent

(notation p ~ o) if their faithful images are isomorphic.

2.4.8. Lemma. For every i there ezists a minimal G-submodule N;
of V such that (N;,G) ~ (M;,H;). In particular, if (V,G) is monolithic,
then all (M;, H;) are equivalent to the monolith (M, G) of the given (V,G).
Furthermore, (V/M, G) € var{(D;/M;, H;)| i =1,2,...}. O
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The following theorem is parallel to a well known group-theoretic result
of Kovéics and Newman [45, 46], but in proving it one has to overcome addi-
tional difficulties. These difficulties stem from the fact that finite represen-
tations of groups over an infinite field are not, strictly speaking, completely

“finite” objects.

2.4.9. Theorem. A representation is critical if and only if it is both

S-critical and Q-critical.
First we establish one auxiliary fact.

2.4.10. Lemma. Let p = (V,G) be a finite representation, X a proper
subvariety of var p and ¢ = (A4, R) a finite representation in var p\ X'. Then
var p contains a subvariety Y and a representation o such that

(a) X C Y

(b) o is a critical factor of p;

() (QS-1)o C s

(d)ypg Y butpe)Vvare.

Proof. Let C be a set of all critical factors of p. For each positive
integer 7 denote by C; the subset of all representations from C whose orders

do not exceed . Then
G CCC---CC=C,
where t = |p|. Denote J; = X VvarC; for each: =1,...,t. Then
X=)1C)V,C... YV =varp.

Since ¢ € varp\ X, there exists ¢ such that ¢ ¢ YV, but ¢ € V.y:. Let X
be the class of all critical representations from X and let D = Xy U Ciy;.
Evidently var D = Y;;;. Furthermore, every proper critical factor of every
representation from D is contained in Xy UC; C ); (because the order of a
proper factor of a finite faithful representation is strictly less than the order
of the given representation).

Denote D = QSD, then D is closed under taking factors. Since ¢ €

YVit1 = var D, there is a minimal realization of ¢ = (4, R) in var D:

(A, R) = (W]/Wg, Tl/Tz), where (Wl,Tl) g ﬁ(Dj,Hj)-

j=1
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All (Dj, Hj) are critical representations belonging to D, therefore it follows
from the above that each (DJ-,HJ-) is contained either in Xy U C; or in
Ci+1 \ (X0 UC;). We may assume that

(D;, Hj) e XoUC; if 1<j <k,

(Dj,Hj) € Ciqur \(XoUGi) if k+1<j<n.

Since ¢ ¢ V; = var(XoUC;), theset (Dgy1,Hi+1), ... ,(Drn, Hy) is nonempty.

There exists m such that
¢ ¢ VaI‘{X,Ci, (Dk+1, Hk+1), e ,(Dm, Hm)},

¢ € Va‘r{x,ci,(Dk+l,Hk+l),- .. ,(Dm+1,Hm+1)}'

Denote var{X,C,-, (Dk+1, Hk+1), ceey (Dm+1,Hm+1)} =), (Dm+1 ,Hm+1)
= ¢. Then for Y and o the conditions (a), (b) and (d) are satisfied. It
remains to prove that (c) is also satisfied.

Let o; be a proper factor of ¢. All critical factors of o; are critical
factors of the initial representation p, and their orders are strictly less than
|e| = i + 1. Therefore all critical factors of o; are contained in C; C Y,

whence ¢; € Y. O

Proof of Theorem 2.4.9. To prove the nontrivial part, suppose
that p = (V, G) is both S-critical and Q-critical (in particular, p is finite
and faithful). If X = var(S-1)p, then p ¢ X and, by the previous lemma,
there exist a subvariety )V and a representation ¢ of var p such that

(a) X C Y

(b) o is a critical factor of p;

(c) (QS-1){a} C ;

(d) p¢ Y but pevara Vv ).

Denote by Dy the class of all finite representations from ) and let D =
Do U {c}. Then D is factor-closed and varp = var D. Let

p = (W1/Ws, Ty/Ts), where (W1, Ti) € [[(Ds, Hj)

j=1
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be a minimal realization of the (faithful!) representation p in var D. All the
(Dj;, H;) are critical and, since p ¢ ), some of them must coincide with o.

Thus we have

1
(W1,T1) C (D1, Hy) x -+« x (Ds, Hy) x H(Bi,si) =W, T)
i=1
where (D;, H;) € Do C Y and each (B;, S;) is isomorphic to ¢ = (B, S). Be-
ing critical, (B;, S;) has a monolith M; = p(B;, S;). By (¢), M; = Y*(B;,S:)
and so Y*(W,T) = @;1 M;. Since Y*(W;,Ty) C Y*(W,T), we have

Vi(p) = V(W1 /W, Ty /T2) C ((@ M)+ W2)/ W, .

Fach summand (M; + W3)/W, is invariant and irreducible with respect to
G = T, /T, therefore the representation (V*(p), G) is completely reducible
and is decomposed into a direct sum of G-representations which are equiv-
alent to (u(e), S).

On the other hand, p is monolithic, hence by Lemma 2.4.8

((p), G) ~ (u(2), S).

Together with the above, this implies that Y*(p) = p(p). Therefore (Q-1)p
C Y. Consequently, since (S-1)p C Y, it follows that (QS-1)p C Y. By (d),
p is critical. O

2.5. Critical representations and irreducibility

As we said at the outset, the main applications of the technique of
critical representations will be demonstrated in Chapter 3. Nevertheless, it
is appropriate to present some applications right now. In particular, we will
see that there is a close connection between criticality of a representation
and its irreducibility. This connection becomes absolutely transparent if the
corresponding representation is ordinary.

Recall that a representation of a finite group G is said to be ordinary if
the order of G is not divisible by the characteristic of the ground field, and

modular otherwise. Further, we will say that a representation is simple if it
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is faithful and irreducible simultaneously (this terminology was introduced
in [78] and is justified by the following obvious observation: a representation

is simple if and only if it does not have proper epimorphic images).

2.5.1. Proposition. A finite simple representation is critical. A

finite ordinary representation is critical if and only if it is simple.

Proof. Let p = (V, G) be a finite simple representation and let D be
the set of its proper factors. Suppose that p € var D. Let

(V,G) = (B/A, S/R), where (B,S) C [[(Di, H), (Di,H:) € D

be a minimal realization of p in var D. Since p coincides with its monolith, by
Lemma 2.4.8 it is equivalent to the monolith of each (D;, H;). But the order
of (D;, H;) is strictly less then the order of p, which gives a contradiction.
Thus p ¢ var D, that is p is critical.

Let now p be an ordinary critical representation. By the Maschke
Theorem, it is completely reducible, and since p is monolithic, it must be
irreducible. O

Of course, a modular critical representation need not be irreducible —

see the examples at the end of this section.

2.5.2. Proposition. Let p = (V,G) and ¢ = (W,H) be critical
representations such that varp = varo. Then the monoliths of p and o are

equivalent.

Proof. Denote by D the set of all factors of ¢. Then the variety
X = varp = varo is generated by X. Consider a minimal realization of p

in var D:
p=(B/A, S/R), where (B,S)C [[(D:, H:) € D.

If all the (D;, H;) were proper factors of &, the latter could not be critical.
Therefore ¢ = (D;, H;) for some i. But then Lemma 2.4.8 guarantees that

the monoliths of p and ¢ are equivalent. O
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From Propositions 2.5.1 and 2.5.2 we immediately deduce the following

elegant result:

2.5.8. Corollary. Two finite simple representations generate the same

variety if and only if they are isomorphic. O

In other words, a faithful irreducible representation of a finite group
s uniquely determined by its identities. Although this result is not diffi-
cult, it provides a strong motivation for the study of identities of group

representations, especially when finite groups are concerned.

The next question was raised in [76]: for which varieties of groups ©
the lattice of subvarieties in w® is distributive? The above technique makes
it possible to find a wide class of group varieties for which the answer is
positive. Let us agree to say that a class of finite simple representation D

is closed if each simple factor of a representation from D also belongs to D.

2.5.4. Theorem (Plotkin [78], Vovsi [92]). Let © be a locally finite
variety of groups whose ezponent is not divided by the characteristic of the
ground field. Then all subvarieties in w® are in one-to-one correspondence

with closed classes of finite simple representations from w©®.

Proof. For a subvariety X of w®, let X' be the class of all finite simple
representations from X. Evidently X' is closed. On the other hand, if D is
a closed class of finite simple representations from w®, we set D' = varD.
Let us show that the maps X — X' and D — D' are mutually inverse
bijections, that is, X"’ = X and D" = D.

Let X C w0O. Since X is locally finite, it is generated by finite rep-
resentations. These representations are ordinary and therefore comletely
reducible. It follows that X is generated by its finite simple representations,
whence X" = X.

Let now D be a closed class of finite simple representations from w®.
Denote Dy = QSD, then Dy is closed under taking factors, each simple
representation from Dy is contained in D, and varDy = varD. If pis a
finite simple representation from var Dy, we choose a minimal realization of

p in var Dy:

p =(B/A, S/R), where (B,S)C [[(D:,H:), Di, H;) € Ds.
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By 2.4.8, the monoliths of p and (D;, H;) are equivalent. But p coin-
cides with its monolith, while the monolith of (D;, H;) belongs to D since
(Ds, H;) € Dy. Consequently, p € D. Thus, all finite simple representations
from var D = D' belong to D, whence D" = D. O

2.5.5. Corollary. If © is a locally finite variety of groups whose
exponent is not divisible by the characteristic of the ground field, then the

lattice of subvarieties in wO© is distributive.

Indeed, it follows from the previous theorem that this lattice is isomor-
phic to the lattice of all closed classes of finite simple representations from
the variety w®. O

Notes. 1. It should be emphasized that the lattice of subvarieties of a
locally finite variety of group © need not be distributive. At the same time,
we have proved that if char K { exp ©, then the lattice of subvarieties of
w0 is always distributive. This is rather curious, because there is a natural
injection (but not a monomorphism!) of the lattice of subvarieties of © into

the lattice of subvarieties of w®, so that the latter is, in a sense, “larger”.

2. Under the same conditions on @, the lattice of subvarieties of w® is
finite if and only if © is abelian. This fact will be proved in § 3.5.

The following result contains Proposition 2.5.2 and shows that if two
critical representations have the same identities, then a number of their

structural properties are identical.

2.5.6. Theorem (Vovsi [93]). Let p = (V,G) and ¢ = (W, H) be
critical representations such that var p = varo. Then:

(a) (V/&(p), G) ~ (W/n(c), H);

(b) G/®(G) ~ H/®(H);

() (1(), @) ~ (), H);

(d) var((S-1)p) = var((S-1)o);

(¢) var((Q-1)p) = var((Q-1)o);

(f) var((QS-1)p) = var((QS-1)z).
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Here ®(G) is the Frattini subgroup of G while all the other notation
was introduced earlier. We note that Theorem 2.5.8 is similar to a well
known result of Bryant [8] on critical groups. The proof in essence follows

that of [8] with only a few additional considerations.

It is not an exaggeration to say that there are few results on locally
finitevarieties whose proofs do not depend on critical objects. Therefore
the study of critical representations will lead to a deeper understanding of
a field as a whole, an understanding which will very likely open up new
research directions. However, although the structure of ordinary critical
representations is quite transparent in view of Proposition 2.5.1, in the
modular case our knowledge is rather poor. The situation would be much
better if we had a sufficient number of concrete examples of modular critical
(reducible) representations. Unfortunately, at the present moment only a
few isolated examples are known. Therefore an important general problem
in the field is to construct new series of modular critical representations.

One approach to this problem is based on a classical notion. Let G be

a finite group and let
KG=MioM:&---& M,

be the decomposition of the algebra KG into the direct product of inde-
composable G-modules. These modules, the principal indecomposables of
G, play a fundamental role in the modular representation theory. It is well
known that they are both monolithic and comonolithic. Together with 2.4.3,

this immediately suggests the following question.

2.5.7. Problem. Are the representations of a finite group G corre-
sponding to its principal indecomposables critical? In particular, is it true
if G = 5,9 If the answer in general is negative, find necessary and/or

sufficient conditions under which it is the case.

Another approach to constructing critical representations is based on
the technique of triangular products (see [80] or [94] for the definition).
The point is that if we take two irreducible representations p and o, then

their triangular product p57 ¢ is both monolithic and comonolithic, which is
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already rather close to criticality. Without going into details, we note that
the first two of the following examples are of this type.

Examples. 1. Let K = F,, and let
uts(K) = (K*, UTy(K))

be the canonical unitriangular representation of degree 2. Since UT2(K)
is a cyclic group of order p, it is easy to see that each proper factor of
uty(K) is trivial, i.e. belongs to S. Evidently ut2(K) ¢ S, and hence this
representation is critical. In particular, this shows that a modular critical

representation need not be irreducible.

2. Let K = F; and let p = (V,G) be the natural 2-dimensional repre-

sentation of the group G of all matrices

(Z (1)), where a € K, b e K\ {0}.

It is easy to show that
[2:1, :1:2] -1 (1)

is an identity of every proper factor of p. Indeed, since ¥V has only one proper
G-submodule, which we denote by A, it suffices to prove this assertion for
factors of the following three types:
(1) (V,H) where H is a proper subgroup of G;

(i) (4,6);

(111) (V/A,G).
The first is evident because G is a group of order 6 and each its proper
subgroup is abelian. As to the representations (ii) and (iii), they both are
one-dimensional and so G act there as an abelian group. Hence both these
representations satisfy (1).

On the other hand, the group G is not abelian and therefore (1) is not
an identity of p. Thus p is critical.

3. Let PerS; = (K3,S53;) be the permutational representation of the

symmetric group S3 (i.e. S3 acts on the 3-dimensional space K* = V by

permuting its basis vectors ej, €2, €3), and suppose that char K is “bad”,
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that is, equals 2 or 3. Is this representation critical? Take in V two $;-

submodules
A={ofe; +es+e3)|a€ K}, B={aes+PBer+ves|a+pf+vy=0}

and consider separately two cases.

a) Let char K = 2. In this case AN B = (. Indeed, if a € AN B, then
a = afe; + ez +e3) where 3a = 0, and so @« = 0 and @ = 0. Since dim 4 =1
and dim B = 2, it follows that V = A @ B. Thus V is a decomposable
S3-module and so Per S3 is not critical.

b) Now let char K = 3. We will show that in this case PerS; is a

critical representation. More exactly, we will show that

([z1,z2] ~1)? (2)

is not an identity of Per S3, but is an identity of every proper factor of this
representation. The first is easy: choose in S; the transpositions o = (12)
and 7 = (13), and verify that e;o([o, 7]—1)? = e; + €2+ 3 # 0. To prove the
second assertion, we note that if char K = 3, then A C B, and that A and B
are the only proper S3-submodules of V. Since all factors of the composition
series 0 C A C B C V are one-dimensional, 53 acts on these factors as an
abelian group, and therefore the corresponding representations satisfy the
identity [z;,z2] — 1. To show that (2) is an identity of every proper factor
of Per 53, it is enough to consider factors of the following types:

(i) (V,H) where H is a proper subgroup of Ss;

(i) (B, Ss);

(111) (V/A, Ss).
But for these factors the claim is evident because: (i) every proper sub-
group of S3 is abelian; (ii)-(iii) the representations (A4, S3), (B/A, S3) and
(V/ B, S3) satisfy the identity [z;,z,] — 1.

2.5.8. Problem. Let PerS, = (K", S5,) be the permutational repre-

sentation of the group Sy,. For whick K and n is this representation critical?



Chapter 3

IDENTITIES OF FINITE AND
STABLE-BY-FINITE REPRESENTATIONS

The problem of determining which varieties are finitely based is one of
the major problems of the theory of varieties of arbitrary algebraic struc-
tures. The theory of varieties of group representations is no exception, and
at all stages of its development the problems associated with the existence of
a finite basis of identities have remained at the center of attention. It should
be emphasized, however, that the ezistence of non-finitely-based varieties of
group representations is an immediate consequence of the existence of non-
finitely-based varieties of abstract groups, established in 1970 by Ol’shansky
[70], Adjan [1] and Vaughan-Lee [88]. Therefore the essence of the finite ba-
sis problem for varieties of group representations is the search for various

interesting and natural cases in which the problem has a positive solution.

The considerations of the present chapter were inspired by the remark-
able theorem of Oates and Powell [69] asserting that every finite group has
a finite basis of identities. Our initial question is the following: does every
representation of a finite group over a field have a finite basis of identities?
The first step in this direction has been done in [91, 92]: it was proved
that for ordinary representations the answer is positive. This rather simple
fact was substantially generalized by Plotkin [78] who proved that there is a
finite basis of identities for every special representation, that is, a represen-
tation p = (V, G) such that (i) V is finite-dimensional, (ii) G has a normal
subgroup of finite index acting stably on V, and (iii) |G/ H| is not divisible
by the characteristic of the ground field.

At the same time, the question of the existence of a finite basis for

113
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identities of an arbitrary representation of a finite group has remained open
for a rather long time. Moreover, the results of [92] and [78] motivated the
following more general problem: does every stable-by-finite representation
(i.e. a representation satisfying only (ii)) have a finite basis of identities?
In 1987, this problem was solved in the affirmative by Nguyen Hung Shon
and the author [101]. The main aim of the present chapter is to provide a

complete proof of this result.

It should be noted that the finite basis problem for stable-by-finite rep-
resentations is parallel to the well known problems on the existence of finite
bases for identities of nilpotent-by-finite groups and rings. For associative
rings the problem was solved quite a long time ago, but for groups and Lie
rings they have only been solved with some additional restrictions [14,90];

in general they still remain open.

The chapter is organized as follows. In § 3.1 we prove that an ordinary
representation of a finite group has a finite basis of identities. Although
this fact is contained in the more general results of subsequent sections,
we decided to provide its proof separately because it is quite transparent
and illustrative. Also, in this specific case we are able to prove a rather
stronger result. Sections 3.2-3.4 are entirely devoted to proving the finite
basis property for stable-by-finite representations (Theorem 3.4.2). Several

corollaries and related facts are established in § 3.5.

Throughout the chapter, our ground ring K is a field.

3.1. Ordinary representations of finite groups

The ideology of the proof presented in this section goes back to Oates—
Powell [69] and Kovdcs—Newman [44] and is based on two principal con-
cepts: critical representation and Cross variety. By analogy with varieties
of groups, we say that a variety X of group representations is Cross if (i)
X is locally finite, (ii) X is finitely based, and (iii) X' contains only a finite
number of nonisomorphic critical representations. The following assertion

is standard.



3.1. ORDINARY REPRESENTATIONS OF FINITE GROUPS 115

3.1.1. Lemma. A subvariety of a Cross variety is also a Cross variety.

Proof. Let Y be a subvariety of a Cross variety X. Then Y certainly
satisfies (i) and (iii). Further, denote ] = Id X and J = Id ). Since X is
finitely based, I is finitely generated as a completely invariant ideal. By
(ii), X has a finite number of subvarieties whence, in particular, all strictly
ascending chains of completely invariant overideals of I are finite. A usual
“noetherian-type” argument now shows that all these overideals are finitely
generated as completely invariant ideals. In particular, J is finitely gener-
ated, that is, Y is finitely based. O

3.1.2. Theorem (Vovsi [92]). The variety generated by an ordinary

representation of a finite group is a Cross variety.
To prove this assertion, we need two lemmas.

3.1.3. Lemma. Let p = (V,G) be a simple representation. If 0 # v €
V and 1 # g € G, then there exists h € G such that vo (1 — gh) # 0.

Proof.Suppose that vo(l1—g*) = v—vo(h™!gh) = 0 for every h € G.
Then for every h € G

voh™ —(voh™)og=0. (1)

Let B be the G-submodule of V generated by all vo h~!, h € G. Since
v # 0, we have B # {0}, and since p is irreducible, it follows that B = V.
Now (1) implies that g € Ker p which is impossible because p is faithful. O

For group representations, we define now an analogue of the so-called
chief centralizer identity from [69]. We set

w; =1— (:co_lzl)“‘
and inductively

wyg = 'wd_l(l — (zo—lzd)zoa) . (1 _ (z,;_llzd)zd_l’d)
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where z;, z;; are pairwise distinct free generators of F. Then w, belongs
to K F and involves

_(@d+1)(d+2)

(d+1)+1+2+---+d 5

free generators €g,%1,...,%d; To1; To2,T12; Tod,- -+, Ld—1,4. Further,let p =
(V,G) be a representation, and let A and B be G-submodules of V' such
that A C B and the quotient B/A is irreducible. Then the stabilizer of
this quotient (i.e. the kernel of the representation (B/A, G)) is called an

irreducible stabilizer of p.

3.1.4. Lemma. Let p = (V,G) be an arbitrary representation. If
|G| < d, then wy is an identity of p. Conversely, if wq is an identity of p,

then the index in G of any irreducible stabilizer does not ezceed d.

Proof. If |G| <€ d, then every substitution of group elements for the
variables g, ..., x4 gives value 1 to at least one of the :ci_l:cj. Hence yowy =
0 is satisfied in p.

Now, let wq be an identity of p. It suffices to prove that if p is a
simple representation, then |G| < d. Assume the contrary: |G| > d. Choose
pairwise distinct elements go,91,...,9¢4 € G and let 0 # v € V. Since
95 '91 # 1, Lemma 3.1.3 guarantees that there exists ho; € G such that

v =vo(l— (g5 g)t)#0.

Hence w; is not an identity of p. Further, since g;'g2 # 1 and g7 g2 # 1,
one can successively find koo € G and hj, € G such that v = v; 0(1 —
(95 92)"2) # 0 and v3 = v2 o (1 — (97 ' g2)"**?) # 0. Thus

vo(l— (g5 g0)")(1 - (g5 92)"*)(1 — (97" 92)"*) # 0,

that is, ws is not an identity of p. Repeating this argument, we eventually

obtain that wy is not an identity of p, contradicting the assumption. O

Proof of Theorem 3.1.2. Following [44], denote by C(e,m,c) the
class of all groups of exponent e, whose chief factors are of order at most m,

and whose nilpotent factors have nilpotency class at most ¢. By C(d; e,m,¢c)
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we denote the class of all representations p = (V, G) over the given field such
that G/Ker p € C(e,m,c) and the indices in G of irreducible stabilizers of p
are at most d. In particular, if p is a simple representation from C(d; e,m,c),
then necessarily dim V' < d and |G| < d. Since any ordinary representation
of a finite group belongs to some class C(d; e,m,c) with e not divisible by
char K, Theorem 3.1.2 is contained in the following assertion which is of

interest in its own right:

if e is not divisible by char K, then C(d;e,m,c) 1s a Cross variety of

group representations.

To prove this assertion, denote ©@ = C(e,m, ¢). By a theorem of Kovics
and Newman [44], © is a Cross variety of groups. Therefore the variety of
group representations w® is locally finite and finitely based. Denote by X
the variety of all representations from w® satisfying the identity wg. Then
X is also locally finite and finitely based. By Lemma 3.1.4, X contains only
a finite number of simple representations. Since char K does not divide e, all
finite representations from X are ordinary. Thus Lemma 2.5.1 guarantees
that X contains only a finite number of critical representations, and so X
is a Cross variety. It remains to show that X = C(d; e, m,¢c).

Evidently X C C(d;e,m,c). Conversely, if p € C(d;e,m,c), then p
certainly belongs to w®, hence it remains to prove that the identity wg
is satisfied in p. It suffices to show that wy is satisfied in each finitely
generated subrepresentation o = (W, H) of p. This subrepresentation must
be finite, hence, by the Maschke Theorem, it is completely reducible. Let
o = (@ W;, H) beits decomposition into a sum of H-irreducible summands.
Clearly the class C(d;e, m,c) is closed under taking subrepresentations, so
that (W;, H) € C(d; e, m,¢) for each i. Since (W;, H) is irreducible, it follows
that |H/Ker (W;, H)| < d. By Lemma 3.1.4, wy is satisfied in (W;, H) for

each i, hence it is satisfied in o as well. O

38.1.5. Corollary. Let X be a variety of group representations. Then

the following conditions are equivalent:

(a) X is generated by an ordinary representation of a finite group;
(b) X C C(d; e,m,c) where char K | e;

(¢) X is a Cross variety.



118 3. FINITE AND STABLE-BY-FINITE REPRESENTATIONS

Indeed, it suffices to notice that every ordinary representation of a
finite group is contained in some class C(d; e,m,c) and apply the previous

assertion. O

3.2. Several auxiliary results

In the next three sections, our main purpose is to prove that a stable-
by-finite representation has a finite basis of identities. To prove this result,
we first have to develop the necessary techniques and to establish a number
of auxiliary facts, some of which are of independent interest. Qur exposi-
tion will follow that of [101]; however, it should be noted that the proof
incorporates some ideas and intermediate facts from the earlier papers [92]
and [78].

Recall that if X is a variety, then the variety determined by all n-
variable identities of X is denoted by x(™ (see §0.3).

3.2.1. Lemma. If X is locally finite-dimensional, then X(™ is finitely

based for every n.

Proof. Let I =IdX. Then X'™ is determined by the set of identities
I, =INKF,. Since X is locally finite-dimensional, we have

dimg(KF,/1I,) < oo.

Thus I, is an ideal of finite codimension of the finitely generated algebra
KF,, therefore I, is finitely generated as an ideal, and so X™ is finitely
based. O

The next assertion generalizes Lemma 3.1.4 and has been proved in
[78]. Take the word

wa = wy(To, T1,. .., Td; To15 T02,T125-- -5 Tody+ -+ > Td—1,d)
defined in the previous section, and for every k set

Wak = WA(T0,T1,. -+, Td} To1k; T02ks T12k5 -+« - 5 Todky- -+ » Td—1,d,k)
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where the z; and z;;; are, of course, pairwise distinct free generators of the
group F. Further, let

(n) _
Vg = Wdi1Wq2 ... Wen.

It is easy to evaluate the number of variables involved in v‘(in

). we have d+1
variables zo,1,...,24 plus n sets of d(d+ 1)/2 variables z;;i each, that is,

(d+ 1)+ nd(d +1)/2 = (d + 1)(nd + 2)/2 variables in all.

3.2.2. Lemma. Let p = (V,G) be a representation. If G has a normal
subgroup H of index < d and such that (V,H) € S", then v‘(i") is an identity
of p. Conversely, if v\ is an identity of p, then the indez in G of any

irreducible stabilizer does not exceed d.

Proof. To prove the first assertion, let
0=VCWVC...CVp,=V

be an H-stable series in V. For each k = 1,...,n consider the naturally
arising representation pr = (Vi/Vk-1, G). Since H acts identically on
Vi/Vi—1, it follows that |G/Kerpi| < d. By 3.1.4, the identity was is
satisfied in py. Since this is true for each k, we see that v‘(i") = w4y ... Wan,
is an identity of p.

Conversely, let v‘(i") be an identity of p. It suffices to show that if p is
simple, then |G| < d. Suppose that |G| > d and let go, g1,. . ., gn be pairwise
distinct elements of G. It was shown in proving Lemma 3.1.4 that for any

0 # v € V there exist elements ho11, ko021, R1215...,hd—1,41 € G such that

vy =vowai(go,91s-..,94d; ho11; ho21, hi215. .oy ha—1,40) # 0.

Similarly, for v; there also exist elements hosz,ho22,h122,...,ha—1,42 € G
such that

v2 = v; 0w42(go, g1,-- -, 9d; hoiz; ho22,R1225. .. ha—1,42) # 0.

Repeating this argument, we eventually obtain that y ov‘(in) = 0 is not

satisfied in p, contradicting the assumption. O



120 3. FINITE AND STABLE-BY-FINITE REPRESENTATIONS

The following two properties of stable representations over a field of

prime characteristic are commonly known (see for instance [5, 28, 75]).

3.2.3. Lemma. (i) If(V,G) is a faithful stable representation over
a field of characteristic p, then G is a nilpotent p-group of finite exponent
and this ezponent depeﬁds only on p and the class of stability.

(i) If (V, G) is a representation of a finite p-group G over a field of
characteristic p, then it is stable of class depending only on |G|. O

For an arbitrary group G, denote by ®(G) its Frattini subgroup, by
F(G@) its Fitting subgroup and by O,(G) its p-radical (i.e. the largest normal
p-subgroup of G). The following assertion follows directly from Lemma
3.2.3.

3.2.4. Corollary. Let (V,G) be a faithful stable-by-finite representa-
tion over a field of characteristic p. Then:

(1) Ou(G) is the largest normal subgroup of G acting stably on V;

(i1) Op(G) s the intersection of all irreducible stabilizers of (V,G). O

For an arbitrary group G, consider its action on Op(G) via inner au-
tomorphisms. Each G-irreducible factor of Op(G) is an abelian group of
exponent p, therefore it can be regarded as a vector space over the prime
field F,,. The following lemma is a generalization of one assertion from [78];

the proof belongs to R. Lyons.

3.2.5. Lemma. Let (V,G) be a finite faithful representation over F,
and let Op = Op(G). If the dimension of each G-irreducible factor of the
space V is at most d, then the dimension of each G-irreducible factor of O,

is at most d*.

Proof. Let
0=VwCevc..-cvV,=V

be a G-composition series of V. By assumption, dimy,(Vj+1/V;) < d for

each i. The group G acts on this series in triangular fashion; since this
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action is faithful, each ¢ € G can be regarded as a ¢ x ¢ block-triangular

matrix
ak41
ar+2 @)
Q43
g =

a4

az as

ay as ag e ap A4t

where k=1+2+...4(t—1) = (t—-1)t/2 and each a; is an m; X n; matrix

over F, with both m; and n; not exceeding d.! By the previous assertion,

O, acts trivially on each factor Vj4;/V;, therefore if the above matrix g

belongs to Op, then ary; = agy2 = -+- = ary¢ = 1. In other words, O,
consists of block-unitriangular matrices.

Denote by H; the set of all matrices g from O, such that a;4; = a;42 =

- = a; = 0 (thus each element from H; has at most 7 nonzero element

below the main diagonal). Then
1CHCH; C---CHr =0,

and it is easy to see that each H; is a normal subgroup of G. Furthermore,
each factor H;/H;_; can be regarded as an additive m; x n; matrix group
over F;, and so dimy,(H;y1/H;) < d?. Since each G-irreducible factor of O,

is isomorphic to a factor of some H; ;/H;, the lemma follows. O

3.2.6. Lemma. Let G be a finite group, O, = Op(G), ® = ¥(G).
Then:

(i) Op(G/®)=0,2/%;

(ii) O,®/® is a direct product of minimal normal subgroups M, /®,...,
M,/® of G/®;

(iii) O, ®/® has a complement L/® in G/®, that is, G/® = (0, ®/®) N
(L/®).

Proof. Denote F = F(G). Then, by a result of Gaschiitz [19], we

have:

1'We emphasize that the a; are numbered along the diagonals.
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(a) F(G/®) = F/®;

(b) F/® is a direct product of minimal normal subgroups M;/®,...,
M,./® of G/®;

(¢) F/® has a complement L*/® in G/®.

Using (a)-(c) and also the fact that a normal subgroup which is con-
tained in the socle (that is, in the product of all minimal normal subgroups)

is the product of some minimal normal subgroup, we immediately obtain
the desired assertions (i)—(iii). O

Our next objective is to prove an analogue of the remarkable “Noncriti-
cality Lemma” of Oates and Powell [69]. To do this, we need Lemmas 0.5.10
and 0.5.11, their group-theoretic prototypes [69, 33.37 and 33.43], and also
the following fact.

3.2.7. Lemma (Vovsi [92]). Let p = (V,G) be an arbitrary repre-
sentation, W a G-submodule of V and Mi,..., M, normal subgroups of G.
If

Vo (Myay = 1)(Mazy —1)... (Myiny —1) C W

for every permutation m € S,,, then for every m € S,

Vo ([Mr(l),Mr(2)," . ,Mr(n)] - 1) cw

Proof. (All commutators without inner brackets are supposed to be
left-normed). First we prove the lemma for n = 2. In this case, by assump-

tion,
Vo(M; —1)(M,—1)CW, Vo(M;—-1)(M; —1)CW. (1)

We will repeatedly use the Three Subgroup Lemma: if A, B, C are subgroups
and N a normal subgroup of some group, and if any two of the commutator
subgroups [4, B,C],[B,C, A)],[C, A, B] are contained in N, then the third
one is contained in N as well.

Let V X\ G be the semidirect product corresponding to p. Then clearly
W aV X G. Rewriting (1) in terms of multiplication in the group V X\ G,

we have

[V, M, M2] C W, [V, My, M;] = (M, V,M;] C W.
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By the three subgroup lemma, it follows that [M;, M,,V] € W, that is,
[V, [M1, M;]] C W. In other words, we have got the inclusion

Vo (M,M]-1)CW,

as desired.

Now suppose that everything has been proved for n — 1, and let the
condition of the lemma be satisfied. One has to show (in multiplicative
notation) that [V, [My1),..., Mxm]] & W. We will prove this inclusion
only when = is the identical permutation, because for any other permutation
the proof is analogous. Thus, let us show that [V, [M;,...,M,]] C W.

Denote [My,...,M,_1] = M. In view of the three subgroup lemma,
the desired inclusion [V, [M, M,]] C W will be established if we prove that

V,M,M,]C W, and [V,M,,M]CW. (2)
By the condition of the lemma,
Vr e Sn1: [V, Meayyeros Myn_n)l, M) € W.
This means that if W; /W is the M,-center of V/W, then
Vi € Sno1: [V, Mray,. -y Ma(n—1)] € Wh.
Since Wi is a G-submodule of V, it follows by the induction hypothesis that
Vr € Snot: [V [Meayse oo s Myno1)]] € Wi

In particular, [V, [M,...,M,_1]] = [V, M] C W), whence [V,M,M,] C W.

It remains to prove the second of the inclusions (2). By assumption,
V€ Sn—l : [[V,Mn],Mr(l),'--,Mr(n—l)] cw (3)

Denote V; = [V, M], then V; is a G-submodule of V. Applying the induction
hypothesis to (3), we obtain

Vre Sp_1: [%,[Mr(l),'--,Mr(n—l)” cCwW.
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In particular, [V4,[M,...,M,_1]] = [V1i,M]| = [V,M,,M] C W, as re-
quired. O

3.2.8. Corollary. Let p = (V,G) be a faithful representation, M, ...,
M, 4G and
Vo (M‘;r(l) — 1) e (M‘;r(n) — 1) =0

for every w € Sy,. Then for every w € S,
[M‘;r(l),- .. ,M‘;r(n)] =1. O

In particular, for M; = --- = M,, = G this yields the well known
Kaloujnine theorem [38]: if (V, G) is a faithful n-stable representation, then

G is a nilpotent group of class at most n — 1.

We can now establish the desired Noncriticality Lemma. It was proved
in [92] and is an analogue of Lemma 2.4.2 from Oates and Powell [69] (see
also [68, 51.37]).

3.2.9. Lemma. Let p = (V,G) be a faithful cyclic representation.
Suppose that G possesses normal subgroups My,..., M, and a subgroup L
such that

(a) G = (M,,..,M,, L),

(b)) G#(My,...,.Mi_1,Miyq,...,M,, L) (i=1,...,n);

() Vo(Myay—1)...(Mgn) — 1) =0 for every permutation © € S,.

Then p is not eritical.

Proof. Let H; ~ M; ({ = 1,...,n) and Hy ~ L. Consider the free
product H = Hy * Hy *.--x H,, and apply Lemmas 0.5.10 ahd 0.5.11 to the
regular representation (KH,H). For each: = 1,...,n let §; be the endo-
morphism of (K H, H) taking H; to 1 and acting trivially on each H; (j # 1).
Denote -

(Ai, Di) = Ker;, (A,D)=[)(4i, D).
i=1
By 0.5.10, each element of A4 is a linear combination of monomials involving
elements from every H;. By [68, 33.37], each element of D is a product of

commutators also involving elements from every H;.
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Let a be the epimorphism of H onto G extending the given isomor-
phisms Hy ~ L and H; ~ M;. If v is a generator of the cyclic KG-
module V then, letting 1%, = v, we get an epimorphism of representations
a:(KH,H) — p. It follows from (c) and Corollary 3.2.8 that

[M'lr(l),M-rr(Z), cee ,M-rr(n)] =1

for every m € S,. Using this observation together with (¢) and taking into
account the structure of elements from A and D described in the previous
paragraph, we see that (4, D) C Kera.

Let J be the set of all nonempty sequences j = (j1,...,jr), where
1<j1 <---<jr <n. By Lemma 0.5.11, every w € KH can be written as

u):zt+-§::twﬂj
jeJ
where v € A C Kera and 8; = 6;, ...6;,. A similar decomposition is valid
for any element of the group H [68, 33.43]. In particular, this guarantees
that if we define (V;,N;) = (KH,H)P*, then (V;, N;) is contained in some
subrepresentation (V,G;) of p, where G; = (My,...,M;_y,Mi1;,...,M,,
L). By (b), (Vj, N;) is a proper subrepresentation of p.
Let ¢ be the direct product of the representations (V;, N;):

o= 1[N =@V [[ V-
jeJ je€J jE€J
Using the epimorphisms 8o : (KH,H) — (V;,N;), define a homomor-
phism v: (KH,H) — ¢ letting forany w € KH and h € H

wy = Ewﬂja, hy = H kB;a. 4)
jeJ jeJ
Let us show that Kery C Kera.
Denote Kery = (B, R,), Kera = (Ba, Ra). The inclusion Ry C R,
was proved in the original noncriticality lemma. We prove that B, C B,.
According to (4), the equality wy = 0 is valid in the direct sum @ V; if
and only if wBja = 0 for all j. In other words, w8; € Ker a for all j. Since
w=1u+ )Y, +wpf; and u € Kera, it follows that w € Kera.
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Thus, we have the epimorphism « : (KH,H) — p and the homomor-
phism~y : (KH,H) — ¢ such that Kery C Ker a. Therefore there exists an
epimorphism of (K H, H)y onto p. Since (KH,H ) is a subrepresentation
of ¢ and ¢ is a direct product of proper subrepresentations (V;, N;) of p, we
see that p cannot be critical. O

3.3. Bounds for the orders of critical representations

The aim of this section is to show that, under certain conditions, the
orders of critical representations and the cardinalities of their generating sets
are bounded by several special parameters. These results will play the key

role in proving the finite basis property for stable-by-finite representations.

3.3.1. Lemma. Let p = (V,G) be a critical representation, V* = p(p)
its monolith and N a nilpotent normal subgroup of G acting trivially on V*.
Then the representation (V,N) is stable, and if also char K { |N|, then this

representation is trivial.

Proof.Let N = N, xNgx... be the decomposition of N into primary
components. Each N, with p{ char K acts on V completely reducibly. Let

V=VieVo---0V,

be the decomposition of V into Nj-irreducible summands. Let A be the
sum of all V; on which N, acts trivially, and let B be the sum of all other
Vi. Then V = A® B. Since N, acts trivially on V*, we have necessarily
A # {0}, and since N, 4G, both A and B are invariant with respect to G.
However, V is an indecomposable G-module because p = (V,G) is critical.
Hence V = A, that is, N, acts trivially on V for every p # charK. It
remains to note that if p = char K, then N, acts stably on V by Lemma
3.2.3 (ii). O

Until the end of this section we assume that char K = p # 0. In

addition, we fix the following notation:

p = (V,G) is a critical representation over K,
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®=&(G), 0p=0,G), ¥p=2(0y)
C =Cs(0,2/®), Cp=Cq(0p/®p).
It is well known that A « B == ®(A) C ®(B). Therefore &, C ®, whence

Cp C C. Moreover, since O, /®,, is an abelian group of exponent p, we have
O, C Cp. Thus
$,C0,CC,CCC@ (1)

where all the terms of this chain are normal in G. Finally, for any stable
representation, we agree for brevity to call its stability class just the class

of this representation.

38.3.2. Lemma. Suppose that the classes of stable quotients of the
critical representation p = (V,G) are at most s, while the indices in G of

irreducible stabilizers of this representation are at most d. Then |C/O,| <
dad+1.

Proof.1) By Lemma 3.2.4 (ii), O, coincides with the intersection of all
the irreducible stabilizers C; of p. Since Op C C, we have O, = ;,(CNC;).
Let V* = u(V,G) and let C* be the kernel of the representation (V*,G).
Then C* is one of the irreducible stabilizers of p, and hence O, = [;(C N
C* N Cj). Dropping the extra terms from this intersection, we obtain an

“irredundant” intersection
t
0,=[)(CncCc*ncy). (2)
j=1

So 0, = (CNC1)N---N(CNC)N(CNC*), and hence C/O, can be embedded
isomorphically in the direct product G/C; X --- x G/Cy x G/C*. Since all
of Ci,...,C,,C* are irreducible stabilizers, the order of every factor here is
at most d. Hence |C/0,| < d**?!, and it remains only to show that ¢ < sd.

2) We can assume that ¢ > d, for otherwise there is nothing to prove.
We put
D:=()(CnC*nCy), i=1,...,t
i
Then D; N Dy = O, for i # k; that is, D; and D; centralize each other
modulo O,. Note that the groups D;/O, are nontrivial by the minimality
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of the intersection (2). A standard argument shows that they generate their
direct product in G/O,. Indeed, let [Td; € Op. Since the factors of this
product commute modulo O,, we have

di' =[[di mod 0p, (j=1,...,1)
i)
Each factor on the right hand side belongs to C; by the definition of Dj,
while d; € D;. Since C; N D; = O,, we conclude that d; € O,. Thus every
factor of the product []d; belongs to O,, whence the desired assertion
follows.

In each D;/0O, we choose a subgroup M;/O, which is a minimal non-
trivial normal subgroup of G/O,. Suppose that the group M;®/® is nilpo-
tent. Then by (a) from the proof of Lemma 3.2.6, M; C F(G). Since
M; C D; € C* = Ker(V*,G), it follows from Lemma 3.3.1 that M; acts
stably on V. So M; is a p-group, and hence M; = O,. But this is impos-
sible, since M;/O, is nontrivial. Therefore for every i the group M;®/® is
not nilpotent.

Suppose now that M;/O, is a nilpotent group. Since M; C C and C
centralizes the factor O,®/®, which is itself a nilpotent group, the series
M;® O O,% D ® can be refined into a central series, and hence the group
M;®/® is nilpotent. By the above, this is impossible, and hence M;/O, is
not nilpotent. Thus we have proved that there are non-nilpotent normal
subgroups M;/O, of G/O,, generating their direct product in the latter.
Recall now a well known group-theoretic fact (68, 52.43]:

If My,..., M, are non-nilpotent normal subgroups of a finite group G
which generate their direct product in G, then G possesses a subgroup L
such that G = (My,..., M., L), but G is not generated by L together with
a proper subset of the set of subgroups My,..., M,.

Applying this statement to our group G/Op, we conclude that G/O,
has a subgroup L/O, such that

G/Op = (My/Op x -+ x M;/Op) - L/ Oy, 3)

where no M;/O, can be removed without violating the equality (3). Then
G = M,... ML, and no subgroups M; can be removed. Thus the repre-
sentation p = (V, @) and the subgroups Mi,..., M, L satisfy the first two
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conditions of the noncriticality lemma. We show that if ¢ is sufficiently

large, then they also satisfy the third condition of the lemma.

3) Since the group M;/O, is not nilpotent, it has elements of order
prime to p. Being a chief factor of G, M;/O, is a direct power of some
simple group. Hence M;/0, is generated by its elements of order prime to
p. Furthermore, let

0=VoCViC---CVn=V (4)

be an upper Op-stable series in V. We fix an arbitrary factor V/Vi_; and

refine it to a G-composition series
Vici=Wo CW1 C--- C Wi =V,

Then we choose elements b;,...,bq in G (where d is the bound for the
indices of irreducible stabilizers given in the statement of the lemma) which
satisfy the following conditions:

a) Every b; belongs to some subgroup M;; (1 <i; <t).

b) Distinct b; belong to distinct subgroups M;; (this is possible since,
by assumption, t > d).

¢) The order of every b; modulo Oy is prime to p.

We put B = (Op, b1,...,bq) and study the representation (Vi /Vi_1, B).
The group B acts on Vi/Vi_; as B/O,. The group B/O, is abelian (since
distinct M; commute elementwise modulo O,) and is generated by elements
of order prime to p. Therefore p { |B/O,p|, whence (Vi /Vi_1,B) is com-
pletely reducible. Consequently, each W,_1/Vj_1, wherer =1,...,], has a
B.invariant direct complement in W,./V;_1, which we denote by U,_; /Vi_;.
So Wy /Vie1 = Weey/Vie1 ® Upo1/Vi—; and

1
Vie/ Vi1 = @Ur—l/vk—l- (5)

r=1

We show that U,_; o(b; — 1)...(bg — 1) C Vi_; or, equivalently, that
Weo(by —1)...(ba —1) C Wr_s.

For this it suffices to show that at least one of the b; lies in the stabilizer
of the quotient W,./W,_;. We put C, = Cg(W,/W,_;) and consider the

group
Cr/O, N (M1/Op X -+ X M,/Op).
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It is contained in the socle of the group G/O, and is normal in G/O,,
therefore it is the direct product of some of the M;/O,. Since C, is an
irreducible stabilizer of p, we have |G/C,| < d. Hence there are at most
d—1of the M;/O, not contained in C,/O,, whence at least one of the groups
M;; /O, (7 =1,...,d) is contained in C,/O,. Then the corresponding b;
belongs to C,, as required.

Thus on all the direct summands U,_;/Vi—_1 from (5) the element (b; —

1)...(ba — 1) acts as zero. Hence
Vko(bl—l)...(bd—l)gvk_l. (6)

We emphasize that thisis true forall k = 1,...,m and for all sets of elements

b1,...,bq satisfying the conditions a)—c).

4) We now show that if £ > sd + 1, then
14 O(Mr(l) - 1) .. -(M-;r(t) et 1) =0

for any permutation 7 of the numbers 1,...,¢{. Let z; € My;; we must
show that Vo (z; —1)...(z, — 1) = 0. Since s > m (we recall that s is the
bound for the stability classes of the factors of the representation p, while
m is the length of the series (4)), we have t > sd+ 1> md+1 > md, so it
suffices to check that

Vko(zl—l)...(zd—l)gvk_l. (7)

Since the groups M;/O, are generated by their elements of order prime to
p, every z; can be presented as z; = b; ...b,a, where by € M,(;), a € O,
and the orders of the elements b, modulo O, are not divisible by p. The

desired inclusion is now immediately deduced from (6), the formula
gh-1=(g-1)(h-1)+(g-1)+(h-1),

and the fact that O, acts identically on Vi /Vi—1 and that distinct M; com-
mute elementwise modulo O,.

Thus, for ¢ > sd + 1, the representation p satisfies all the conditions
of the noncriticality lemma, which is impossible. Hence ¢t < sd, and so

IC/0,| < d**+1. O
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3.3.3. Lemma. Let the classes of stable factors of a critical repre-
sentation p = (V,G) be at most s, the indices of irreducible stabilizers at
most d, and the orders of chief factors of the group G at most m. Then the
number of generators of G is bounded by a number depending only on s, d
and m, and the order of G is bounded by a number depending only on s, d,

m and p.
Proof. We adhere to the notation of Lemma 3.2.6. We have
Op®/2=M; /P x...x M, /P

where all the M;/® are chief factors of G. Then

C =Cc(0,%/8) =[] Ca(M:/®)
i=1

and since |M;/®| < m, we have |G/Cqe(M;/®)| < m! and hence |G/C| <
(m!)r.

In each of the normal subgroups M; we choose a Sylow p-subgroup
P, (: =1,...,r). Since M; is nilpotent, M; = P; x @Q;, where p { |Qil;
therefore from the fact that M;/® is a p-group, we have ¢; C ®. Hence
M; = P;®, and since

G/®=(M/®x- - x M,/®)-L]®,

we have G = (M,,...,M,, L) = (P,...,P., L), where none of the sub-
groups can be omitted. The representation (V, O,) is stable of class at most
s, while all the P; are contained in Op. Thus, if r > s, all the conditions of
the noncriticality lemma are satisfied by the subgroups P;,..., P, and L.
This is impossible, and so r < s whence |G/C| < (m!)°.

By Lemma 3.3.2, |C/O,| < d*¢t!, and therefore |G/O,| < d*¢+*(m!)°.
It remains to bound both the order of O, and its number of generators.

For brevity, we denote |G/O,| by k, and suppose that R is the sub-
group generated by the complete set of coset representatives of the fac-
tor group G/0,. The action of G by conjugation on O, induces a faith-
ful representation (Op/®,, G/Cp) over F, (we recall that &, = &®(O0,)
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and C, = Cg(0,/®p)). We choose in O,/®, a set of cyclic Fp[G/C)p-
submodules N;/®,,...,N;/®, in such a way that G = N;... N,R with ¢
minimal. Then by the noncriticality lemma we get ¢ < s.

Since every N;/®, is a cyclic F,[G/Cp]-module, we have
dimy,(N;/®,) < |G/Cp| < |G/O,| = k.
Consequently, each group N;/®, has at most k generators, and hence
G/®,=N;...N,R/®,

has at most k(s + 1) generators. Since ®, C ®, the group G/® has at most
k(s + 1) generators as well. Using the well known property of the Frattini
subgroup, we conclude that the number of generators of G is also bounded
by

k(s +1) < & (m!)*(s +1).

Finally, the bounds for the number of generators of G and for the index
of O, in G give a bound for the number of generators of O, (by the Schreier
formula). Since O, acts faithfully and s-stably on V, O, is an (s — 1)-
nilpotent p-group whose exponent is bounded in terms of s and p (Lemma
3.2.3 (i)). Together with the above, this gives a bound for |O,|, and hence
also for |G|. O

3.3.4. Lemma. Let the classes of stable factors of a critical repre-
sentation p = (V,G) be at most s, the indices of irreducible stabilizers at
most d, and let e = exp(G/O,) be not divisible by p. Then the number of
generators of G is bounded by a number depending only on s, d and e, and

the order of G is bounded by a number depending only on s, d, e and p.

Proof. As in the preceding lemma, we consider the representation
(0,/®,, G/C,) over F,. Since O, C Cp, it follows that p { |G/Cp|, and

hence this representation is completely reducible. Let
08y = My/2, @ - & M/,

be a decomposition of O,/®, into F, G-irreducible summands. Since O, is

a normal subgroup of G whose index is prime to p, we have G = O, X\ L for
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some subgroup L. Hence G = (M;,...,M,, L), where all M; are normal in
G and no M; can be omitted. By the noncriticality lemma, r < s.

Being a representation over the field K, pis also a representation over
its prime subfield F,. By the condition, the index in G of the stabilizer
of each irreducible factor of the KG-module V is at most d. But then the
index in G of the stabilizer of each irreducible factor of the F,G-module
V is also at most d (it is clear that every stabilizer of a F,G-irreducible
factor contains the stabilizer of some K G-irreducible factor). Therefore the
F,-dimension of each F,G-irreducible factor of the module V is at most d.
By Lemma 3.2.5, the F,-dimension of each F,G-irreducible factor of O, is
at most d%. Thus dimy, (M;/®,) < d?, whence

dimg, (0,/®,) < d°s. (8)

Therefore, first, it follows that G/C) is a matrix group over I, of degree at
most d%s and of exponent dividing e. By the classical Burnside Theorem,
|G/C,| is bounded by a number f;(d%s,e). Second, it follows from (8) that
the group O,/®, has at most d’s generators, and hence O, itself can be
generated by at most d?s elements. As in the preceding lemma, it now
follows that |Op| < f2(d, s, p).

We have O, C Cp C G. The orders of the groups G/C, and O,, and
the number of generators for O, have already been bounded. In addition,
by (1) and Lemma 3.3.2 we have

Cp/0p| < 10/ 0yl < d**+.

Thus the number of generators of the group G is at most fi(d%s,e)+d*?+! +
d?s, while the order of this group is at most f;(d%s,e)d***! fo(d,s,p). O

Remark. We emphasize that in Lemmas 3.3.3 and 3.3.4 the number
of generators for the group G (in contrast to its order!) is independent of
the ground field K. This observation will be of decisive importance in the

proof of the main theorem over a field of characteristic zero.
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3.4. Identities of stable-by-finite representations

We say that a variety X of group representations is a variety of bounded
rank if it satisfies the following conditions:

(i) X is locally finite-dimensional,

(i1) X is finitely based,

(iii) the basis ranks of all its subvarieties (including X’) are finite and
uniformly bounded.

3.4.1. Lemma. All subvarieties of a variety of bounded rank are also
varieties of bounded rank and satisfy the ascending and the descending chain

conditions.

Proof. Let A be a variety of bounded rank, and let » be an upper
bound for the basis ranks of its subvarieties. Then X is generated by its
free representation Fr,X = (KF, /I, F,) of rank n (here I, is the ideal
of identities of X in the group algebra KF;). Since all subvarieties of X
are generated by group representations with n generators, it is easy to see
that all these subvarieties are in one-to-one correspondence with the verbal
overideals of I, in the algebra K F,. By the local finite-dimensionality of
X, the algebra KF,, /I, is finite-dimensional, and hence the subvarieties of

X satisfy both chain conditions. The rest is obvious. O

3.4.2. Corollary. Every variety of bounded rank is Specht, and every

Cross variety is a variety of bounded rank. O

Thus the long preparatory work has been finished, and now we can

state and prove the main result of the present chapter.

3.4.3. Theorem (Vovsi and Nguyen Hung Shon [101]). The variety

generated by a stable-by-finite representation is a variety of bounded rank.

The proof of this theorem divides into two cases, depending on the

characteristic of the ground field.

THE CASE OF PRIME CHARACTERISTIC. Let char K = p. Recall that

C(e,m,c) denotes the class of all groups of exponent e, whose chief factors
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have orders at most m, and whose nilpotent factors have classes at most c.
According to [44], C(e,m,c) is a Cross variety of groups. By C(d, s;e,m,¢)
we denote the class of all representations p = (V,G) over K such that
G/Kerp € C(e,m,c), the indices in G of irreducible stabilizers of p are at

most d, and the classes of stable factors of p are at most s (cf. the proof of
Theorem 3.1.2).

3.4.4. Lemma. Let p = (V,G) be an stable-by-finite representation,
and let X = varp. Then there are positive integers k, d, s, e, m, ¢ for which
x® c C(d,s;e,m,c).

Proof.1) By hypothesis, there is a normal subgroup H of G such that
(V,H) € S™ and |G/H| = d < co. By Lemma 3.2.2, p satisfies the identity
v‘(in) depending on (d + 1)(dn + 2)/2 = r variables. Hence this identity also
holds in the variety X and in the variety x(™, Applying Lemma 3.2.2 once
more, we find that the indices of irreducible stabilizers in any representation

from X" are at most d.

2) Without loss of generality, the representation p will be assumed to
be faithful. Then, by Lemma 3.2.3 (i), H is a nilpotent p-group of finite
exponent. Consequently every Sylow p-subgroup of G contains H. Let

0=AyCA C---CA=V (1<n) (1)

be the upper H-stable series in V. If P is an arbitrary Sylow p-subgroup
of G, then H a P, and hence all terms in (1) are invariant under P. On the
factors A;y;/A; the group P acts as P/H. Since P/H is a finite p-group of
order at most d, by Lemma 3.2.3 (ii) every representation (A;4+1/A;, P/H)
is stable of class depending only on d. Therefore (1) can be refined to a
P_stable series whose length is bounded by a constant depending only on
d and n. We denote this constant by s = s(d,n). Thus if P is a Sylow
p-subgroup of G, then the representation (V, P) is stable of class at most s.

Next we show that all stable representations of the variety X () have
stability class at most s. First, let (4, N) be a finite faithful stable represen-
tation in X. Then N is a finite p-group. Applying Lemma 2.1.5 and taking
into account that (A4,N) is faithful, we see that (4,N) € QSDo{(V,G)}.
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This means that there is an epimorphism a : (B,S) — (A4,N), where
(B,S) € (V1,G1) x -+ x (V4,Gy) and all the (V;,G,;) are isomorphic copies
of the initial p = (V,G). Since (4, N) is finite, (B, S) can be replaced by
a finitely generated subrepresentation. By 2.2.2 and 2.2.9, X is a locally
finite variety; hence this subrepresentation is finite. Let (B,S) be already
finite. Since N is a finite p-group, it is an a-epimorphic image of some Sylow

p-subgroup P of §. Thus we have an epimorphism
a: (B,P)— (A,N) where (B,P)C (V1,G1)x -+ x(V3,Gy).

It is clear that then (B,P) C (V1,P;) x -+ x (V;, P;), where P; is some
Sylow p-subgroup of G;. From the above it now follows that the stability
class of the representation (B, P) is at most s. A fortior: this is true for
(4,N).

Now let (A4, N) be an arbitrary stable representation in X, Then all
its (1, s)-generated subrepresentations belong to X. These subrepresenta-
tions are finite and, as has just been shown, they all belong to S°. Therefore
(4,N) € (§*)(). It remains to note that, by Corollary 1.1.2, (5*)©®) = §°.

3) We show that the group G belongs to the class C(e,m,c) for some e,
m and c. For e we can immediately take the exponent of G. Furthermore,
let A be a nilpotent factor of G; then A is an extension of a p-group B of a
finite exponent by a finite group A/B, where

exp B<exp H<e and |A/B|<|G/H|=d.

Being a nilpotent group, A can be presented as A = P x Q1 x Q2 X ...,
where P is its Sylow p-subgroup and the Q; are Sylow g;-subgroups (g; # p).
Then B C P, and thus P is an extension of the p-group B of exponent at
most e by the finite p-group P/B of order at most d. For such a group, its
nilpotence class is bounded by some f(e, d) (see for example [5]). As for an
arbitrary Q;, we have Q; N B = 1, whence |@Q;| < d and so the nilpotence
class of Q); can not exceed d. Hence the nilpotence class of A is also bounded
by some ¢ = ¢(d, e).

It remains to bound the orders of the chief factors of G by some number

m. By the structure of G, it follows that each of its chief factors is either a
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factor of G/H (and so has order at most d) or is a central factor of the group
H of exponent p. In the second case, this factor is actually an irreducible
F,[G/H]-module. The order of such a module is at most p?, and hence it

suffices to put m = p?. Thus G € C(e, m,¢) for some e, m and c.

4) Set @ = C(e,m,c), then X = varp C w@. Since O is a Cross variety
of groups, w@ is finitely based. A fortiori, w® has a finite axiomatic rank,
that is, (wO®)® = wO for some t. Hence XYV C wO.

Finally we put k = max(r,s,t), where the numbers r, s and ¢ are as
indicated in parts 1), 2) and in the preceding paragraph respectively. By
the above it follows that X® C C(d,s;e,m,c). O

The proof of Theorem 3.4.3 in the case char K = p can now be com-
pleted quickly. Let p be a stable-by-finite representation over K, and
let X = varp. By the preceding lemma, x® c C(d, s;e,m,c) for some
k,d,s,e,m,c. Therefore X'¥ C w®, where © = C(e,m,c). By Theorem
2.2.2, the variety X*¥) is locally finite, and by Lemma 3.2.1 it is finitely
based. All subvarieties of X*) are generated by their critical representa-
tions, but according to Lemma 3.3.3, if (V,G) is a critical representation
in C(d, s;e,m,c), then the number of generators for G can be bounded by
some r = r(d,s,e). Consequently the basis ranks of all subvarieties of x )
are at most r. Thus X® is a variety of bounded rank. The same holds for

its subvariety X.

THE CASE OF ZERO CHARACTERISTIC. 1) Now let char K = 0, and
let p = (V,G) be a stable-by-finite representation over K. The group G
possesses a normal subgroup H such that (V,H) € S™ and |G/H| = d < oo.
By Lemma 3.2.2, p satisfies the identity v‘(in). Let © = var(G/H) and let
V be the variety of all group representations from S™ x © satisfying the
identity v‘(in). Since varp C V, it suffices to show that V is a variety of
bounded rank. By Theorem 2.2.1, V is locally finite-dimensional. By the
Oates—Powell theorem, © is a Cross variety of groups; therefore, by Theorem
1.1.4, the variety S™ x © is finitely based. Hence V is finitely based as well.
It remains to prove that if ) is a subvariety of V, then r4()) is bounded by

some r = r(V).
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2) Let R be a finitely generated subring of K. We consider the map
v' : M(K) — M(R) defined in §0.4, and we put o= x. Obviously
X C (8™ x O)r (the subscript R shows that the corresponding variety
of representations is being considered over R). Denote by = the set of
all primes not dividing e = exp ©. Since ) is locally finite-dimensional, by
Proposition 0.4.5 the variety X is generated by finite R-representations over
finite fields with characteristics in . Hence X is also generated by critical
R-representations over finite fields with characteristics in w. More precisely,
X is generated by representations (4, N) over R, such that:

(a) R/AnnpA = L is a finite field and char L { e;

(b) (4, N), regarded as a representation over L, is critical.
Our next objective is to show that for each representation (4, N) of this
sort the number of generators for the group N is bounded in terms of d, n

and e.

3) Denote by X' the class of all representations from X for which the
domain of action is annihilated by the ideal AnngA. It is clear that X is
actually a variety of group representations over L, and immediately from

the definition we have (4, N) € X.

Since the identity v‘(in) is satisfied in Y and all its coefficients are in-
tegers, it is also satisfied in both X = Y* and X;. By Lemma 3.2.2, the
indices of irreducible stabilizers in any representation from X, (in particular

in (A, N)) are at most d. Furthermore, let char L = p. Since
(A,N) € XL QSZ x O,

we have (4,0*(N)) € ST. Hence, from the faithfulness of the critical
representation (A4, N) we conclude that ©*(V) is a p-group, and so ©*(N) C
Op(N) = O,. Actually, ©*(N) = Oy, because e = exp O is not divisible by
p. All this shows that the critical representation (A4, N) over L satisfies all
the conditions of Lemma 3.3.4 if we take n as the bound for the classes of
stable factors. Hence the number of generators for the group N is bounded
by some r = r(d,n,e). We emphasize that this r does not depend on the
field L or even the ring R.

Thus the variety X over R is generated by representations of r-genera-

ted groups. Hence r3(X') < r, and since R is an arbitrary finitely generated



3.5. COROLLARIES AND RELATED RESULTS 139

subring of K, by Lemma 0.4.4 we also have ry()) < r. This completes the
proof of the theorem. O

3.5. Corollaries and related results

From Theorem 3.4.3 it follows, in particular, that the variety generated
by a representation of a finite group is a variety of bounded rank. Keep-
ing in mind the Oates—Powell theorem, one can naturally ask whether the
variety generated by a representation of a finite group is actually a Cross
variety. For ordinary representations the answer is positive in view of Theo-
rem 3.1.2, but in general it is not the case. Indeed, let K be an infinite field
of characteristic p. Consider the variety S* over K; then, by Proposition
1.1.7, S* is generated by its free representation Fr,S*. Hence S* is also

generated by the corresponding faithful representation
ﬁ484 = (KF4/A4, F4/KCI‘(F1‘4S4)).

By 3.2.3 (i), Fs/Ker(FrsS*) is a nilpotent p-group, and hence it is finite.
Thus S* is generated by a representation of a finite group. On the other
hand, S* has infinitely many subvarieties [79] and therefore can not be
Cross.

However, if the ground field is finite, the above question is answered in

the affirmative.

3.5.1. Corollary. The variety generated by a representation of a finite

group over a finite field is Cross.

Proof. The variety X generated by a representation of a finite group
is locally finite, and by Theorem 3.4.3 it is finitely based. Therefore it
suffices to show that if the ground field is finite, then X contains only a
finite number of nonisomorphic critical representations. From the proof of
Theorem 3.4.3 in prime characteristic, it follows that X C C(d, s;e, m,¢) for
some d,s,e,m,c. Therefore Lemma 3.3.3 implies that the orders of critical
representations from X are uniformly bounded in terms of s, d, m and

char K. It remains to notice that every critical representation is cyclic, and
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that a finite group has only a finite number of cyclic representations over a
given finite field. O

3.5.2. Corollary. If a variety of group representations over a field of
prime characteristic is generated by a stable-by-finite representation, then it

is generated by a finite representation.

Proof. Repeating the previous argument, we obtain that the orders
of critical representations in such a variety X are uniformly bounded. It
follows that X is generated by its free representation of some finite rank.

Since X is locally finite, this representation is finite. O

The following results show that certain properties of varieties, which in
general are quite distinct, turn out to be pairwise equivalent if we restrict
ourselves to locally finite or locally finite-dimensional varieties. Their proofs
are obtained by combining some arguments of Sections 2.2, 3.1, 3.3, 3.4 and

a few observations from [78].

3.5.8. Proposition. Let X be a locally finite variety. Then the

following conditions are equivalent:

(a) X satisfies the mazimum condition on subvarieties;
(b) X is generated by a finite-dimensional representation;
(c) X is generated by a finite representation;

(d) X is generated by a stable-by-finite representation;
(e) X CC(d,s;e,m,c) for some d, s, e, m, ¢;

(f) X is a variety of bounded rank.

Proof. (a) = (b). Let X satisfy the maximum condition on subvari-
eties. Consider the set of all subvarieties Xy of X such that Xy is generated
by a finite-dimensional representation. This set has a maximal element, say
Y. Assume that Y # X. Then there exists a finitely generated representa-
tion p € X not belonging to Y. Since X is locally finite, p must be finite.
Therefore var{p, )Y} can be generated by a finite-dimensional representa-
tion, which contradicts the maximality of Y. Thus Y = X, whence X is

generated by a finite-dimensional representation.
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(b) = (c). Let X be generated by a finite-dimensional representation
o = (W, H). Since X is locally finite, it is contained in some w®, where ©
is a locally finite variety of groups. Denote exp® = ¢ and dimW = d. By
Lemma 2.4.2, X is generated by critical factors of ¢. If p = (V, G) is one of

these factors, then dim V' < d. Choose in V a G-composition series
o=VocVicCc---CcV; =V (tSd) (1)

and let H; = Ker(V;4:/Vi, G). Then G/H; is an irreducible matrix group
of degree < d over K. Now the proof divides into several cases.

1) K is an algebraically closed field of characteristic p. Then G/H; is
an absolutely irreducible matrix group of degree < d. Since exp(G/H;) <e,
the order |G/H;| of this group is bounded by some number depending only
on d and e (see for instance [87, §23.3, Lemma 2|). The same is true for
|G/H| where H =N!_, H;.

As usual, let O, = O,(G). Since H C O,, we have |G/O,| < k, where
k depends only on d and e. Repeating literally the argument from the proof
of Lemma 3.3.3, we obtain that the order of G is bounded by a number
depending only on d, ¢, p and s, where s is the upper bound for the classes
of stable factors of p. Since s < dim V < d, we see that |G| is bounded by
some number n = n(d,e,p).

Thus X is generated by representations of n-generated groups. There-
fore X is generated by its free representation Fr, X, which is finite.

2) K is an arbitrary field of characteristic p. Let K be the algebraic

closure of K. Consider the map
v: M(K) - M(K)

defined as in §0.4. A straightforward verification shows that X” is a lo-
cally finite variety of group representations over K generated by the finite-
dimensional representation oz = (K @ x W, H). By 1), X" is generated by

a finite representation T. Since
'
X = X" =varg(X") = varg(vargT) = varg,

X is generated by a representation of a finite group, and so by a finite

representation.
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3) K is a field of characteristic zero. Since G/H; is a matrix group over
K of degree < d and of exponent < e, by the Burnside theorem its order
is bounded by a number depending only on d and e. The same is true for
|G/H|, where H = NH;. Now we note that H acts faithfully and stably
in the series (1). Since char K = 0, this implies that H must be a torsion-
free nilpotent group. But G is finite, and so H = {1}. (This argument
actually shows that in a locally finite variety of group representations over
a field of characteristic zero, every stable representation is trivial.) Thus

|G] £ n =n(d,e) and the proof can now be completed as in 1).

(d) == (e). If char K = p, this follows from Lemma 3.4.4. Let
char K = 0, and let X be a variety generated by a finite representation
over K. By Corollary 3.1.5, X is contained in some class C(d;e,m,c), and

it remains to note that every stable representation in X is trivial.

(e) = (f). If char K = p, this implication was established in the proof
of Theorem 3.4.3. If char K = 0, it is contained in Corollary 3.1.5.

Since the implications (¢) == (d) and (f) == (a) are trivial, the proof
of Proposition 3.5.3 is completed. O

Let again & be a locally finite variety of group representations. We say
that & is ordinary if X C w®, where O is a locally finite variety of groups
with exponent not divisible by char K. Combining the results of §3.1 and

Proposition 3.5.3, we obtain:

3.5.4. Proposition. Let X be an ordinary locally finite variety of

group representations. Then the following conditions are equivalent:

(a)—(f) from the preceding statement;

(g) X is a Cross variety;

(h) X contains only a finite number of simple representations;
(k) X has only a finite number of subvarieties;

(1) X satisfies the identity v‘(in) for some d and n;

(m) X CC(d;e,m,c) where char K fe. O

Suppose now that X is equal to w©® with O as above. Then the situation

becomes completely transparent.
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3.5.5. Proposition (Plotkin [78]). Let X = w® where O is a locally
finite variety of groups whose exponent e is not divisible by char K. Then
the conditions (a)-(m) are satisfied if and only if © = A..

Proof. Let @ = A,, the variety of abelian groups of exponent e.
Denote by K the algebraic closure of K and again consider the map v :
M(K) — M(K). Clearly X” coincides with the variety w.A. over K and
so is locally finite and ordinary. Hence X" is generated by finite simple
representations. Since an irreducible representation of an abelian group over
an algebraically closed field is one-dimensional, it follows that &' contains
only a finite number of finite simple representations. Therefore the number
of subvarieties of X'” is finite, Since the map v is injective (Proposition
0.4.2), the number of subvarieties of X is finite as well. By 3.5.4, X is
generated by a finite representation.

Conversely, let wO be generated by a finite representation. Then w®
satisfies some multilinear identity u(z1,...,2,) (for example, the standard
polynomial identity of degree 2d where d is the dimension of the generating
representation). If G € O, then Reg G = (KG,G) satisfies u(z1,...,z,)
and so u(g1,...,gr) = 0 for any g; € G. Since u(z1,...,z,) is multilinear,
it follows that u(ai,...,a,) = 0 for all ¢; € KG. Thus for every G € © the
group algebra K G satisfies the identity u(zy,...,25).

Now we prove that © must be abelian (cf. [80, pp.173-174]). Suppose
the opposite. Then @ contains a group A whose commutator subgroup A4’
is infinite. Let G = A x A X ... be an infinite direct power of A. Since
its group algebra K G satisfies some polynomial identity, by a theorem of
Passman [73’], G has a normal subgroup of finite index whose commutator
subgroup is finite. If H is such a subgroup, then |G : H| < oo implies
that the natural projection of G into some direct factor A is surjective.
But then A’ is an epimorphic image of H', whence A’ must be finite. This

contradiction completes the proof. O

Similar criteria can be proved for locally finite-dimensional varieties. If
the ground field has prime characteristic, we can apply the previous propo-
sitions (since in prime characteristic every locally finite-dimensional variety

is locally finite). Consider separately the case of characteristic zero.
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3.5.6. Proposition. Let X be a locally finite-dimensional variety of
group representations over a field of characteristic zero. Then the following

conditions are equivalent:

(a) X satisfies the mazimum condition on subvarieties;
(b) X is generated by a finite-dimensional representation;
(c) X is generated by a stable-by-finite representation;
(d) X satisfies the identity v\ for some d and n;

(e) X is a variety of bounded rank.

Proof. The implication (a) => (b) is proved as in Proposition 3.5.3.
We show that (b) implies (c). Let X’ be generated by a finite-dimensional
representation p = (V,G). Since X C §™ x O for some n and some locally

finite variety of groups ©, G possesses a normal subgroup N such that
(V,N) € S™ and G/N € O. Let

o=VycVic..-cV;=V

be the upper N-stable series in V, then each V; is invariant under G. Denote
by H; the kernel of the naturally arising representation (Vi31/Vi, G). The
group G/H; can be regarded as a matrix group over the ground field K.
Since N C H;, we have G/H; € © and hence exp(G/H;) < oo. By the
Burnside theorem, G/ H; is finite. Denote H = NH;. Then G/H is finite
and, on the other hand, H acts stably in (2). Thus p is stable-by-finite.

By Lemma 3.2.2, (c) implies (d). By Theorem 3.4.3, (e) implies (a).
So it remains to show that (e) follows from (d). Let v‘(in) be satisfied in X.
We again use the fact that X C 8™ x @ with a locally finite ©. Denote by
V the variety of all representations from ™ x O satisfying the identity v‘(in).
Repeating literally the proof of Theorem 3.4.3 in the case of characteristic
zero, we obtain that V is a variety of bounded rank. It remains to notice
that ¥ CV. O

There are many open problems closely related to the considerations of

the present chapter. Here we mention only two of them.

3.5.7. Problem. Does every finite-dimensional representation have a

finite basis of identities?



3.5. COROLLARIES AND RELATED RESULTS 145

Undoubtedly, this problem is one of the most important and intriguing

questions of the theory of varieties of group representations.

3.5.8. Problem. Does every representation of a finite group over a
noetherian ring K have a finite basis of identities? In particular, is it true

if K is the ring of integers? if the module of the representation is finite?

We believe that the methods used in proving Theorem 3.4.3, combined
with more sophisticated ring-theoretic machinery, may give an approach to
the latter problem.



Chapter 4

FURTHER TOPICS

Our final chapter deals with a variety of themes at varying levels of
detail. It provides a selection of results which, taken together, illustrate the
diversity of the field and the broad range of techniques used.

In §4.1-4.2 we continue to investigate the finite basis problem for iden-
tities of group representations. More specifically, we are concerned with
questions of the following type: for a given multilinear identity, is a variety
satisfying this identity finitely based?

It is well known that every identity of a linear algebra over a field of
characteristic zero is equivalent to a system of multilinear identities, which-
can be effectively derived from the initial one. For group representations
the corresponding statement is not true (otherwise, by Theorem 1.2.4, every
variety would be homogeneous) and, in general, multilinear identities do
not play here such a prevalent role. But if a variety does happen to be
determined by multilinear identities, or at least satisfies some identity of
this sort, then one can immediately derive significant consequences. For
example, in many cases such a variety is finitely based.

The main result of §4.1 states that in certain respects the behavior
of multilinear identities of group representations is closely related to the
behavior of those of associative algebras. In particular, from this fact and
a recent outstanding result of Kemer [40], we deduce that every system of
multilinear identities of group representations over a field of characteristic
zero is finitely based. In §4.2 we prove a rather old theorem of Cohen
[10] which implies that every representation of an abelian group over a
noetherian ring is finitely based. A far-going generalization of this theorem

has been recently announced by Krasil'nikov [47]. The exact statement of

146
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his result and some related questions and facts are discussed at the end of
the section.

Sections 4.3-4.4 deal with pure varieties. Recall that a variety X of
group representations over an integral domain R is called pure if RF/Id X
is a torsion-free R-module. The interest in pure varieties is motivated by the
fact that they are in a natural one-to-one correspondence with all varieties
over the field of quotients of R. Section 4.3 is mainly devoted to the proof
of an unpublished result of G. M. Bergman on products of ideals in RF
which implies that if R is a Dedekind domain, then the product of two pure
varieties over R is also a pure variety (this fact was earlier proved by the
author [94, Corollary 9.9]). On the other hand, at the end of the section we
sketch an example showing that over an arbitrary domain this, in general,
is not true. In §4.4 we study one concrete series of varieties and prove that
the intersection of pure varieties need not be pure even over Z.

Finally, § 4.5 provides a brief overview of some applications of our the-
ory to varieties of groups, varieties of rings, and dimension subgroups.

The exposition in this chapter (especially in §4.5) is not as complete
as in the previous ones: several proofs are omitted or merely outlined. The

ground ring is, in general, arbitrary.

4.1. Multilinear identities and partial linearizations

What is a multilinear identity of group representations?
On the one hand, it is natural to say that an element u(z1,...,2,) €
K F is multilinear if

u(Z1,...,280) = Z AT o(1) -+ To(n) (1)
g€ S,
where A\, € K. As an example, one can mention the so-called standard

polynomial of degree n, that is, the polynomial
sn(€1,...,20) = Z (signa)zy(1) .- - To(n)-
gE€ES,
According to the Amitsur-Levitzky Theorem, it is an identity of any repre-

sentation over a field whose dimension does not exceed n/2.
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On the other hand, in Chapter 1 we adopted another definition: an

element u(z;,...,2,) € KF was said to be multilinear if

u(zg,...,2q) = Z AoZo(1) « ++ Za(n) (2)
o€S,

where A, ¢ K and z; = z; — 1. In Chapter 1 this approach was completely
justified, for it was closely related to the idea of homogeneity and led to
direct connections with varieties of associative algebras. Now we will show
that from the standpoint of the finite basis problem, the “z;-approach” is

also more natural and reasonable than “z;-approach”.

Let u = u(z;,...,2z,) € K F be a polynomial, that is, u does not involve
negative powers of the z;. We say that u is quasi-multilinear, if the degree
of u in each z; does not exceed 1. For example, every element of the form

(1) or (2) is quasi-multilinear. More generally, every element of the form

Z Aatd(l) e ta(n) (3)
c€Sy,
where A, € K and t; = a;a; + B (ai,0: € K, i = 1,...,n), is a quasi-

multilinear polynomial.

4.1.1. Lemma (Krasil'nikov). Every quasi-multilinear polynomial is
equivalent, as an identity of group representations, to a finite set consisting

of polynomials multilinear in z; and a scalar from K.

Proof.Let u = u(z;,...,2,) € KF be a quasi-multilinear polinomial.
Denote u(1,z2,...,2,) = v(22,...,25) = v, and let w = u — v. Both the
polynomials v and w are quasi-multilinear and, moreover, w is homogeneous
of degree 1 in 2; = z; — 1. Since v is a consequence of u, we see that w
is a consequence of u as well. Therefore ¥ = v + w is equivalent to the set
{v,w}. The same argument may be applied to v and w, and so on.

To make the last statement more precise, consider the set S of elements
f € K F satisfying the following three conditions:

(a) f can be written as a linear combination of terms ¢;¢;...¢,, (plus
possibly a constant term), where each factor ¢; is equal to either some z

or some zk;
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(b) every term t;t;...t,, is a polynomial of degree <1 in each zy;

(¢) if 2 is involved in some term ¢tz ... ¢y, then it is involved in all the
other terms (that is, f is homogeneous of degree 1 in each 2 it involves).

Now we note that our quasi-multilinear polynomial v = u(z1,...,z,)
certainly belongs to S. Present u as a sum of terms t;15...%,, satisfying
(a)-(c). If each ¢; in every term is equal to some zp then, by (¢), u is
multilinear in the variables z and there is nothing to prove. Otherwise one
can find ¢; which is equal to some zp, so that the corresponding term does

not involve z;. Applying to u the above procedure, we get
v=v+w where v=u(21,...,8k-1,1,Tk41,+..,%n).

Both polynomials v and w belong to .5, the number of variablesin visn—1,
and w is now homogeneous of degree 1 in zp. Using the obvious induction,
we eventually obtain a finite set of polynomials multilinear in the 2z, and
possibly, the scalar u(1,...,1). O

It is easy to understand that if X is a variety of group representations
over a ring K and A € K is an “identity” of this variety, then the study of
X can be reduced to the study of the corresponding variety over the factor-
ring K/(A) (at least when the finite basis problem is concerned). Together
with Lemma 4.1.1, this shows that every identity of the form (3) can be
reduced to identities of the form (2) and explains why by a multilinear
identity of group representations we always mean an identity multilinear in

the variables z; = z; — 1.

As usual, let K(Z) be the subalgebra (without 1) of K F generated by
the set Z = {21,22,...}. It is an absolutely free associative algebra and Z
is a free generating set for K(Z). We emphasize that K(Z) does not contain
any nonzero scalars. Every element of K(Z) can be uniquely written as a
polynomial
F=7f(z1,...y20),

with constant term 0, in the noncommuting variables z;. From now on, by
a polynomial we will always mean an element from K(Z); in particular, the
elements of the form Az;, ...z, (where A € K and n > 0) will be called
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monomials. Recall that a polynomial f(z1,...,2,) is multihomogeneous if,
for each 2;, its monomials all have the same degree in z;. Thus a polynomial
is multilinear if and only if it is multihomogeneous of degree 1 in each of
the z; which are involved in it.

Let M C K(Z) be an arbitrary set of polynomials and let T(M) be
the T-ideal of K (Z) generated by M. Of course, in general T(M) ¢ 1d(M).
There arises a question: does there exists a “natural” extension M' of
M such that T(M) C Id(M')? In other words, how is the deducibility
of identities in the “ring-theoretic” sense related to that in the “group-
representation” sense? We will investigate this question via the notion of
partial linearization of identities.

Following [106], for every i = 1,2,..., ¥k = 0,1,2,... and 2z € Z =
{z1,22,...}, let A¥(z) denote the K-linear transformation of K(Z) defined
as follows. Let ¢ be any monomial from K(Z) and let m = deg,, c. Then

(a) if k = 0, then cA¥(2) = ¢

(b) if k > m, then cA¥(2) = 0;

() if 1 < k < m, then cA¥(z2) = c1 + o+ -+ + () where the
summands are all the possible monomials obtainable from ¢ by substituting

z instead of k occurrences of z;.

Example. Let ¢ = z;23232,. Then

1

cA,(z) = zlzgz;»,z + 212022320 + 212222322,
2

cA3(z) = 21222232 + 21222232 + 21222322,
3 2

cA3(2) = n12°232,

cAg(z) = cAg(z) =...=0.

The maps A¥(z) are called the operators of partial linearization. For
arbitrary A¥(z) and arbitrary f € F, we say that A¥(z) acts properly on f
if the variable z is not involved in f. Furthermore, let f be a multihomoge-
neous polynomial and m = deg,, f. We say that A¥(2) acts strictly on f if
0<k<m

For every M C K(Z) let MA be the smallest K-submodule of K(Z)
containing M and closed under all A¥(z). The following theorem gives one

possible answer to the raised question.
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4.1.2. Theorem (Vovsi and Volkov [102]). If M C K(Z), then
T(M) CId(MA).
To prove this theorem, we need two elementary lemmas concerning the
operators A¥(z).

4.1.3. Lemma. If f € M, then all multihomogeneous components of
f belong to MA.

Proof. Let f = f(21,..-,20) = f1 + f2, where f; is homogeneous in
z; of degree m and deg, f» < m. Then

fAT (zn41) = AT (2n41) + F2A7 (2041)

= f1(2n+1,22,...,zn),

while fi(2n41,22,.+.,22)A0 1(21) = f1 and fo = f — fi. Hence fi € MA
and f» € MA. It is clear that continuing this process we eventually come

to the multihomogeneous components of f. O

4.1.4. Lemma. Let f = f(z1,...,25n) be a multihomogeneous polyno-
mial from M and let ! € KF (i=1,...,n; j=1,...,8;). Then

n r) (r
f(cl +- ,C + e+ ca ) = Zfr(c::((,-), ) i(,-)))
where all the f, are multihomogeneous polynomials from MA.

Proof. It is well known that if deg,, f = m, then
flz1yeoyzit 2,000 y20) = ZfAf(z)
k=0

(see [106, p.20]), and since f is multihomogeneous, all the fA¥(z) are mul-
tihomogeneous as well. Applying this remark several times, we eventually

obtain that for arbitrary pairwise distinct variables zf €Z(i=1,...,n3 5=

"si)
fE A e ) = > £ A
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where each f, is a multihomogeneous polynomial obtained from f by apply-
ing a finite number of operators A¥(z). Hence f. € MA and it remains to
replace the z] by the corresponding ¢] (a relation between free generators

of K(Z) is an identical relation of every associative algebra). O

Note. Suppose that all the z;, zf in the proof of Lemma 4.1.4 are
pairwise distinct. Then it is clear that none of the A¥(z) in this proof is
applied to a polynomial already involving z. In other words, we can ensure
that each of the f, is obtained by finitely many applications of operators

Ak(z), each operator acting properly in each of these applications.

Proof of Theorem 4.1.2. 1) Let M’ be the set of all multihomo-
geneous components of polynomials from M. By Lemma 4.1.3, M' C MA,
and since T(M) C T(M'), it suffices to prove that T(M') C Id(M'A). In
other words, we may (and will) assume M to consist of multihomogeneous
polynomials.

2) Every element of T(M) is a sum of elements of the form af¥b,
where a,b € F, f € M, ¢ € End(K(Z)). Hence it is enough to show
that f¥ € Id(MA). If f = f(z1,...,2s), then f¥ = f(2¥,...,2¥). The
polynomials z¥ can be written as sums of monomials

=4l (i=1,...,n).

T z

By Lemma 4.1.4,
fGEe ) = Y D )

where all the f.(21,...,2:) are multihvimogeneous and belong to M A. Thus
it suffices to show that if f(z;,...,2n) is a multihomogeneous polynomial
from MA, then f(ci,...,¢n) € MA for any monomials c1,...,cn.

3) Let m; = deg,, f. Arrange the numbers m; in the nonincreasing

order: m;, > m;, > --+ 2 m;,. Then the sequence
t(f) = (miumiz’ ee,m,0,0,.. )

is called the type of f. Evidently the set of all types is well ordered under

the lexicographic ordering. Furthermore, it is easy to see that if A¥(2) acts
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properly and strictly on f (that is, if z is not involved in f and 0 < k < m;),
then t(fA¥(2)) < t(f) (because the component m; of t(f) splits into two
nonzero components k and m; — k).

Suppose that our assertion is false. Then there exists a multihomoge-

neous polynomial f(z1,...,2n) € MA of the smallest type such that
flery.vycn) € Id(MA) (4)

for some monomials ¢;,...,¢,. We will assume that the set of monomials
C1y...,Cn satisfying (4) is minimal with respect to the number Z?=1 deg ¢;.
Thus our choice of the polynomial f and the monomials ¢y, ...,c, guaran-
tees the following:

(1) if g(21,...,2k) € MA is a multihomogeneous polynomial and t(g) <
t(f), then g(dy,...,dr) € Id(MA) for any monomials dy,..., d;

(ii) if dy,...,d, are monomials satisfying the condition ) deg d; <
> deg c;, then f(dy,...,d,) € Id(MA).

Every c; can be written as A;z;, 2, ...2;,, where A\; € K. Denoting

€ = 2i,%i; ... i, , We have

Define ¢ € End F' by the rule
2% — Tz, ...z, if i=1,...,n
z; if 1>n.

Then

Y _ . .
Z; = %5 Tiy... T, — 1

= (zi1 - 1)(2, — 1)...(z, -1)—1

C;i+w

where w is a sum of monomials of degree at most » — 1.
Since f € MA, it follows that f¥ € Id(MA). On the other hand, by

Lemma 4.1.4 we have

e =f(zf,...,28) = f(&1,...,E) + B1 + Do (5)
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Here ¥; is a sum of elements of the form f(di,...,d,) where the d; are
monomials satisfying the condition Y deg d; < Y deg ¢;, and ¥y is a sum
of elements of the form g¢(dy,...,d,), each g(z1,...,2,) being a multiho-
mogeneous polynomial obtained from f by finitely many applications of
operators A¥(z) with each application involving proper action (see the note
after Lemma 4.1.4) and at least one application being strict. (We emphasize
that f(1,...,) and the summands of ¥; are also obtained by means of
operators A¥(z), but in those cases no strict action is involved).

Every summand from ¥; belongs to Id(MA) by (ii). Every summand
from ¥, belongs to Id(MA) by (i), for if A¥(z) acts properly and strictly
on f, then t(fA¥(2)) < t(f). Since f¥ € Id(MA), it follows from (5) that
f(e1,...,8) € Id(MA). Hence

fleryovyen) = f(E1,..,8) [[ AT € 1d(MA)

i=1

which is impossible in view of (4). O

4.1.5. Corollary. If M C K(Z) is such that MA C Id(M) (for
example, if M consists of multilinear elements), then T(M) CId(M). O

The above results make it possible to apply the theory of varieties of
associative algebras to the solution of several questions on multilinear iden-
tities of group representations. One such application can be demonstrated

right now, while the others will be presented in the next section.

4.1.6. Corollary. Let M C K(Z) be a set of multilinear polynomials.
If T(M) is finitely generated as a T-ideal, then Id(M) is finitely generated

as a completely invariant tdeal.

Proof. By hypothesis, T(M) = T(Mp) for some finite subset My of
M. Tt follows from Corollary 4.1.5 that M C T(M) = T(M,) C 1d(Mo),
whence Id(M) = Id(M,). O

By Kemer’s theorem [40], every set of multilinear identities of associa-

tive algebras over a field of characteristic zero is finitely based. Together
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with Corollary 4.1.6, this yields the following (a priori far from evident)

important consequence.

4.1.7. Corollary. Every set of multilinear identities of group repre-

sentations over a field of characteristic zero is finitely based. O

Since examples of non-finitely-based varieties of group representations
over any K are commonly known (see 0.3.3), it follows that even over a field
of characteristic zero there exist varieties which cannot be determined by

multilinear identities.

4.1.8. Problem. Does every multilinear identity of group representa-

tions determine a Specht variety?

As usual with Specht varieties, this problem makes sense only if the
ground ring is noetherian. It seems unlikely that the answer is positive
(even over a field of zero characteristic), but we do not have any definite
arguments. Some particular cases of the problem will be solved in the next

section.

4.2. Identities of representations of abelian groups
and related results

Consider one of the simplest multilinear identities
21292 — 2227, (1)
Since z122 — 2221 = T1%2 — T221, 1t is clear that a representation p = (V, Q)

satisfies (1) if and only if the group G/Ker p is abelian. Hence (1) determines

the variety w.A, where A is the variety of abelian groups.

4.2.1. Theorem. Over an arbitrary noetherian ring K, the variety of
group representations defined by the identity (1) is Specht. In other words,

every representation of an abelian group has a finite basis of identities.
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This theorem is a consequence of a ring-theoretic result of Cohen [10]
whose proof incorporates some ideas of Higman [34] on closure operations
and partially well-ordered sets. We begin by proving this result.

An algebraic closure operation on a set C is a map assigning to each
subset X of C a subset X of C such that:

1 X Qfgvg?wheneverX cY;

(a)ifze X, then z € X for some finite Xy C X.

For example, X may be the subalgebra generated by a subset X of some
algebra, the ideal generated by a subset X of a ring, etc. A subset X CC
is called closed if X = X. An algebraic closure operation has finite basis
property (f.b.p.) if every closed set is the closure of a finite subset.

A partially ordered set (P, <) = P is said to be partially well-ordered if
for every sequence of its elements p;,p2,... there exist numbers 7 < j such
that p; < p;. This notion was introduced by Erdés and Rado, and it was
Higman who realized its connection with the finite basis property. Namely,
for a partially ordered set P one can define the natural closure operation on
P by letting

X={pl3zeX:z<p}

for any subset X of P. Then a straightforward verification shows:

4.2.2. Lemma (Higman [34]). The following conditions on a partially
ordered set P are equivalent:

(1) P is partially well-ordered;

(i1) every infinite sequence of elements of P has an infinite nondecreas-
ing subsequence;

(1i1) there exists neither an infinite strictly decreasing sequence in P,
nor an infinity of mutually incomparable elements of P;

(iv) the natural closure operation on P has f.b.p.;

(v) the closed subsets of P satisfy the ascending chain condition. O

Note. Since the property of a set to be partially well-ordered turns
out to be virtually equivalent to the f.b.p., in the subsequent arguments one
could easily avoid mentioning the second property explicitly (see e.g. [3,
§5.2]). We prefer to follow the original Cohen’s approach and use both these

notions because, to our taste, this makes the exposition more transparent.
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4.2.3. Example. Let A be the set of all finite sequences of non-
negative integers, including the empty sequence. On this A we define two
orderings:

(F1ye+v5tm) < (J15+-,Jn) i m < n, or m = n and there exists r such
that 7, < jr but 4, = j, for all s > r (i.e. sequences of the same length are
ordered lexicographically on the right);

(t15+++3%m) X (J1y.++,Jn) if m < n and there exists a one-to-one order
preserving map ¢ : {1,...,m} — {1,...,n} such that i, < j,(, for all r
(in other words, the first sequence is majorized by some subsequence of the
second one).

It is easy to see that (A, <) is well-ordered, (A, <) is partially ordered
and the identity map is an order preserving map from (A, =) to (A, <).
Furthermore, by Theorem 4.3 from [34], (A, <) is partially well-ordered.

Let C be a set with an algebraic closure operation and P any partially
ordered set. For any subset X C C x P define its closure X by the rule:
(c,p) € X if and only if there exist (¢1,p;1),...,(Cn,Pn) € X such that

ce{c1y...,cn} and p;<p (1<i<n) (2)

It is easy to see that the map X — X is an algebraic closure operation on
C x P. We say that it is induced by the closure operation on C and the
partial ordering on P.

4.2.4. Lemma. If the closure operation on C has fb.p. and P is
partially well-ordered, then the induced operation on C x P has f.b.p.

Proof. Let X be a closed subset of C x P. For any p € P define
X(p) € C by the rule

X(p) =A{cl (c,p) € X}.

By the definition of the induced closure operation, X (p) is a closed subset
of C, and if p < ¢q then X(p) C X(gq). We order the collection of sets
{X(p)| p € P} by letting

X(p)<X(g) & p<q and X(p)=X(q) as sets.
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Then for any p there exists ¢ with X (p) > X(q) and X(¢) minimal. Indeed,
otherwise there would be an infinite sequence X(p;) > X(p2) > ..., and so
an infinite strictly decreasing sequence p; > p» > ..., which is impossible
because P is partially well-ordered.

We show now that there are only finitely many minimal elements in
{X(p)| p € P}. Assume the contrary, and let X(p1),X(p2),... be an
infinite sequence of pairwise distinct minimal elements. Since P is partially
well ordered, from the sequence p;,ps,... one can choose an increasing
subsequence. Assume p; < p; < ... is already such a sequence. Since the
sets X (p;) are pairwise distinct, so are the p;. Hence

(i) X(p:i) € X(pi+1) because p; < pit1;

(if) X (p:) # X (pi41) because X (piy;) is minimal.

Thus we have found an infinite sequence
X(p1)CTX(p2)C---CX(pn)C...

of closed subsets of C where all inclusions are strict. This is impossible in
view of £b.p. in C.

Let X(p1),...,X(p,) be all the minimal elements of {X(p)| p € P}.
Since C has £.b.p., X(p;) = ¥; for some finite set ¥;. Now take an arbitrary
(¢,p) € X. Then ¢ € X(p) and, for some i, X(pi) < X(p). Therefore
ce X(pi) = Y.. From the definition of the closure operation on C x P,
it follows that (c,p) € Y; x p;. Hence X is the closure of the finite set
U, (Y; x pi), as required. O

As usual, let K[X] = K[z1,%2,...] be the ring of polynomials over K
in a countable number of (commuting!) variables ;. Denote by & the set

of all order preserving injection from the set N of natural numbers to itself.
An ideal I of K[X] is called a ®-ideal if

f(z1,...,2n) e I = f(:cq,(l),...,:cq,(n)) el

whenever f € K[X] and ¢ € ®. We can now prove the key result of this

section which is a variation on the theme of the Hilbert Basis Theorem.

4.2.5. Theorem (Cohen [10]). If K is noetherian, then K[X] satisfies

the ascending chain condition on ®-ideals.
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Proof. 1) Let A be the set defined in 4.2.3. We define the weight of
a monomial Azl ...z to be the sequence (i5,...,i,) € A (for example,
the weight of the monomial z2z4zd is (0,0,2,1,0,3)). The leading term
of a polynomial f € K[X] is its monomial of maximal weight in (A, <),
and the weight wt f of f is the weight of its leading term. Define a map
0: K[X]— K x A by letting

ff=( wt )

where A is the leading coeflicient of f. The closure operation on K, in which
the closed sets are ideals, has {.b.p. because K is noetherian. By Lemma
4.2.4, the closure operation on K x A induced from the closure operation
on K and the ordering < on A has f.b.p.

2) We show that if I is a ®-ideal of R, then I is a closed subset of
K x A. Let (X,a), where A € K and a € A, belong to the closure of I°.
Then, according to (2), there exist (A1,a1),...,(An,an) € I such that

AeKM+-++ KX, and ar=<a (1<k<n) 3)

Let @« = (i1,...,2m) and ar = (21(k),...,ime(k)), 1 < k < n. Since
(Ak,axr) € I®, there exist polynomials fi,..., f, € I suchthat ff = (Mg, ar),
that is, the leading term of f} is

i i (K
/\kzll(k)...zmk*( ) 4)

for each £ = 1,...,n. One has to find a polynomial g € I whose leading
term is Azl ...zim.
By (3), A = ayA; + +++ + anA, for some ay,...,a, € K. Fix an
arbitrary & between 1 and n and note that since aj < a, there exists an

order preserving injection ¢ : {1,...,mt} — {1,...,m} such that
ix(k) < T(r) for r=1,...,my. (5)

We can extend ¢ to an order preserving injection from N to itself; the result-
ing extension again denote by ¢. The polynomial gr = fi(Z,(1)s Te(2)s--+)
belongs to I, and since (4) is the leading term of f, it is clear that

Akz‘p(l) . .z‘p(mk)
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is the leading term of gr. By (5), one can find a monomial ¢, in the variables
Z1,...,%y such that the leading term of the polynomial argrck is equal to
akz\k:ci‘ ...z'm. This is true for each k = 1,...,n, hence the leading term

of the polynomial g = aygic1 + +++ + angncn is

; . ; .
(asAs + -+ agdp)el ..ozl = A} .2y,

while g together with g¢1,...,gn belongs to I, as required.

3) Thus I is a closed subset of K x A and K x A has f.b.p. Therefore
I° = {f8,..., f8} for some polynomials fi,..., f, € I. Denote by Iy the &-
ideal generated by the f;. The arguments from 2) show that for any f € I
there exists a polynomial g € Ip such that f® = g% that is, the leading
terms of f and g coincide. But then wi(f — g) < wt f, and since (A, <) is
well ordered, it follows by induction that f € Iy. Thus I = Iy and so every
®-ideal of K[X] is finitely generated, which is equivalent to the claim. O

Proof of Theorem 4.2.1. We have to prove that if K is noe-
therian, then the variety w.A, determined by the identity (1), satisfies the
descending chain condition on subvarieties. Let F4 be the free abelian
group of countable rank with free generators z;,z2,.... Then it is clear
that the desired property is equivalent to the ascending chain condition on
completely invariant ideals of the group algebra K F4.

First we note that the ring of polynomials K[X] is naturally contained
in K F4, and hence for each completely invariant ideal I of K F 4 the inter-
section I N K[X] is an ideal of K[X]. Evidently it is a ®-ideal. Using the
commutativity of F4, it is easy to see that the ideal of K F4 generated by
INn K[X]is just I. Consequently

I INK[X]

is a one-to-one map of the set of completely invariant ideals of K F 4 into the
set of ®-ideals of K[X|. By Theorem 4.2.4, the latter satisfies the ascending
chain condition. Since the map (7) preserves inclusions, the former satisfies

this condition as well. O

Cohen [10] used Theorem 4.2.5 to prove that every metabelian vari-

ety of groups is finitely based. Historically it was the first application of
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the method of partially well-ordered sets to the finite basis problem. Since
then the method has been substantially developed and applied in a number
of papers (see for instance [8', 65, 89]). Probably the most sophisticated
application of this technique is due to Krasil’nikov [47] who recently an-
nounced several important results. One of these results provides a far-going

generalization of Theorem 4.2.1.

4.2.6. Theorem. Over an arbitrary noetherian ring K, the variety of

group representations defined by the identity

(2122 — 2221 )(2324 — 2423) ... (22n—122n — 22022n-1) (7)

ts Specht.

4.2.7. Corollary. Every triangulable representation over a noethertan

ring has a finite basis of identities. O

When this book was written, the proof of Theorem 4.2.6 had been
published only for K a field of characteristic 0 or p > n [48].!

It is clear that a representation p = (V,G) satisfies the identity (10)
if and only if it is stable-by-abelian, that is, if G has a normal subgroup H
acting stably on V and such that G/H is abelian. Thus Theorem 4.2.6 can
be reformulated as follows: every stable-by-abelian representation is finitely
based. On the other hand, by Theorem 3.4.3 every stable-by-finite repre-
sentation is finitely based. This naturally suggests the following question.

4.2.8. Problem. Let p = (V,G) be a representation over a noetherian
ring K, and let N « H aG with (V,N) stable, H/N abelian and G/H finite
(in other words, p is stable-by-abelian-by-finite). Will the variety var p be
Specht, or at least finitely based? In particular, is it true if K is a field?

A positive solution to this problem would contain both Theorems 3.4.3
and 4.2.6, and would also give a positive answer to the following important

particular case of Problem 3.5.7.

1Recently we received preprints containing the proof in the general case.
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4.2.9. Problem. Does every finite-dimensional representation of a

soluble group over a field have a finite basis of identities?

Indeed, if p = (V, G) is a finite-dimensional representation of a soluble
group G, then without loss of generality G may be regarded as a soluble
matrix group. By the Kolchin—-Mal’cev theorem [62], G is triangulable-by-
finite whence p is stable-by-abelian-by-finite.

We apply now the results of the last two sections to the study of mul-

tilinear identities of the form

2129 .00 2Zn — 25(1)%0(2) - + + Za(n) (8)

with ¢ a nontrivial permutation on n letters. They are called permutation
tdentities. Every set of permutation identities of algebras over any ring K is
finitely based (this follows, for instance, from [81]). Together with Corollary
4.1.6, this implies

4.2.10. Corollary. Every set of permutation identities of group rep-

resentations over an arbitrary ring is finitely based. O

One can now naturally ask: does every permutation identity determine
a Specht variety (provided, of course, that the ground ring is noetherian)?
Similar questions on permutation identities of rings, semigroups, etc. were
quite popular and, under certain restrictions on the ground ring and the
identity (1), were solved in a number of papers (see for instance [52, 65, 81,
89]). For group representations the answer turns out to be positive without

any restrictions.

4.2.11. Theorem. Every permutation identity of group representa-

tions over an arbitrary noetherian ring determines a Specht variety.

This result contains, of course, Theorem 4.2.1 as a very particular case.
In proving it we will need one well known fact on polynomial identities.
Recall that K(Z) is the subalgebra of K F generated by the variables z; =

z; — 1. It is a free associative algebra and the z; are its free generators.
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4.2.12. Lemma (Latyshev [52]). The T-ideal of K(Z) generated by
(1) contains the identity

! H
2y zi2, 2 2zkgr oo 2n
where [2',2"] = 2'2"—2"2' and k+1 is the first number with a(k+1) # k+1.

Proof. Let = denote the equality in K(Z) modulo the T-ideal gener-
ated by (8). Then (8) can be rewritten as

21 o0 o Zk2k4] c0e2Zn =21 4. 2kZo(k+1) + -+ Za(n). (9)

Applying to (9) the endomorphism z; — zxz of K{(Z) (or multiplying (9)
by z on the left if k = 0), we have

210 ZRZZk4) -0 Zn = 21 - e ZR226(k41) - - - Zo(n)- (10)

On the other hand, the endomorphism z,(x41) = 2zo(k+1) of K(Z), applied
to (9), yields

2] oo ZRZht1 o Z2(ka1) o o0 Zn = 21 -0 ZkZ2o(k41) - - - Zo(n)- (11)
Comparing (10) and (11), we have
21 ZRZZRA1 o 2Zn = 21 e 2k 2kt - -- 220(K + 1)L 25(n). (12)

Applying the endomorphisms {z — 2/, zx41 — 2" 241}, {2+ 2",

Zo(k+1) 7 2'2o(k41)} and {2z — 2"z} to (12), we obtain respectively:

r_n — 1 1 13
21 2822 2k o0 Zn = 2100 282 2kl oo 2 Zo(kt1) - - - Zo(n)> (13)

" ! —
2] v e 22 Zft] eenZ Za(k+1)...zn =

=2y ZkZkt1 -2 2 Zo(ktr) - Za(n)y  (14)

"n_t —_ " _t 15
2y e en 22 2 2pg1 2 S 2 2k 2kd1 -0 2 2 Zo(kt1) - -+ Zo(n) (15)

It follows from (13)-(15) that

r_n —_ n_it
2] e 222 Zhg1 e Zn = 21 0 282 Z Zk41 .- 2Zn
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which is equivalent to the claim. O

Proof of Theorem 4.2.11. Let I be the completely invariant ideal
of K F generated by (8). Denoting by = the equality in K F modulo I, and
using Lemma 4.2.12 and Corollary 4.1.5, we obtain

0.

! H
z129 ... zk[2', 2" | 2kgr oo 20

But then

0,

1 "
292y .o2k[2) 2 | zkgr oo 20

and hence

[21,22]23 ... 22, 2" |2k41 - - . 20 = 0.

Repeating this argument, one can replace here z324 by [z3,z4] and so on.

In the end we get

[zl y 7'2][7-3,7'4] cee [ZZm—h z2m] =0

where the exact value of m depends on the evenness or oddness of k and

n —k, but in any case does not exceed [%] + 2. It remains to apply Theorem
4.26.0

A weaker form of this result has been proved in [102].

4.3. Multiplication of pure varieties

We know from §0.3, that the set M(K) of varieties of group represen-
tations over a given K is a semigroup with respect to a naturally defined
multiplication. If K is a field, the abstract structure of this semigroup was
described in [79]: M(K) is a free semigroup with 0 and 1. This result is
analogous to the well known Neumanns—Shmel’kin Theorem [68, 23.32] on
the semigroup of varieties of groups and was actually inspired by the latter.
Since M(K) is anti-isomorphic to the semigroup of verbal ideals of KF, it
can be reformulated as follows: if K ts a field then the semigroup of verbal
tdeals of KF is free. A more general result was later obtained by Bergman
and Lewin [6].
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If the ground ring is not a field, our knowledge of the semigroup of
varieties is rather poor. First, this semigroup is not free. Indeed, let R
be a commutative ring with unit but not a field. Take any ideal a of R
and consider the ideal aF of the group algebra RF. Clearly aF is a verbal
ideal permutable with each ideal of RF' and so M(R) has a nontrivial center.
Moreover, the map a — aF'is a monomorphism of the semigroup of ideals of
R into the semigroup of verbal ideals of RF'. Therefore one should expect to
obtain a characterization of the semigroup M(R) only if the ideal structure
of R is simple enough.

From now on R is an integral domain and K is its field of fractions. It
is natural that the first step in the study of the semigroup M(R) consists
in understanding the relationship between M(R) and M(K). The following
notion proves to be useful here. A representation p : G — AutgV over
R is said to be pure if V is a torsion-free R-module; a variety of group

representations over R is pure if it is generated by pure representations.

4.3.1. Lemma. The following properties are equivalent:
(i) X is a pure variety;

(i) all free representations of X are pure;

(i11)) RF/Id X is a torsion-free R-module.

Proof. If X is generated by pure representations, then by Lemma
0.2.6 its free representations are pure. On the other hand, X is generated
by Fr X = (RF/Id X, F) and so (iii) implies (i). O

4.3.2. Lemma. Letv:M(R) - M(K) and v' : M(K) — M(R) be
the maps defined in § 0.4. Then
(1) V¥ is pure for every Y € M(K);
(i) Y"'* =Y for every ¥ € M(K);
(i) X*' = X if and only if X is pure.

Proof. (i) is trivial. To prove (ii), recall that Id(X”) = K(Id X') and
Id(y"’) = IdY N RF. Therefore we have to show that if J is a verbal
ideal in KF, then K(J N RF) = J. Take any v € J and let A be the
product of the denominators of all its coefficients. Then Av € J N RF and
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u=A"1. u € K(J N RF), whence J = K(J N RF). The proof of (iii) is
also straightforward. O

According to 0.4.1, v is always a homomorphism. Hence, by Lemma
4.3.2, we have an epimorphism of semigroups v : M(R) — M(K) and an
injective map +' : M(K) — M(R) giving a one-to-one correspondence be-
tween all varieties over K and pure varieties over R. The following question
suggests itself: Is the map ' a homomorphism of semigroups? In other
words, is it true that pure varieties form a subsemigroup in M(R)? This
problem, raised by Plotkin in the early 1970’s, can also be reformulated in
terms of verbal ideals: is it true that if R is an integral domain and K its
field of fractions, then

IJNRF = (InRF)(J N RF) (1)

for any verbal ideals I and J of KF?

If R is a Dedekind domain, a positive solution of the problem was
obtained by the author [94, Corollary 9.9]. This immediately led to a natural
ring-theoretic question: for which integral domains R and ideals I and J
of KF (not necessarily verbal!) is the equality (1) true? Answering this

question, Bergman proved the following fact.

4.3.3. Theorem (Bergman [5]). If R is a Dedekind domain then (1)
is true for every right ideal I and every left ideal J of KF.

The aim of this section is two-fold. First, we will present a complete
proof of Theorem 4.3.3 (with the kind permission of its author). Second,
we will sketch a counterexample showing that over an arbitrary domain the
product of pure varieties need not be pure. This result is quite recent and
its detailed exposition will appear elsewhere.

Recall first a few standard notions of commutative algebra (see for
example [104, Chapter 5]). For an arbitrary domain R, an R-submodule
M of its field of fractions K is called a fractional ideal of R if Md C R for
some 0 # d € R. Clearly M is a fractional ideal if and only if M = ad™!
for some ideal a of R and 0 # d € R. In particular, the “ordinary” ideals
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of R are fractional ideals; they will be always denoted by lowercase Gothic
letters.

If M and N are fractional ideals, then their product MN = {5 a;b; | a;
€ M,b; € N} is also a fractional ideal. Therefore the set of all fractional
ideals is a monoid with the identity element R. A fractional ideal M is
invertible if there exists a fractional ideal N = M~?! such that MN = R.
If M is invertible, its inverse M~! coincides with the set (R : M) = {z ¢
K| Mz C R}. We emphasize that if an ideal a of R is invertible, then its

inverse a~! is a fractional ideal but not an ideal, unless a = R.

4.3.4. Lemma. Ifa and b are ideals of R such that a,b,a + b are
invertible, then aN b is invertible and (aNb)~! =a=! + b1,

Proof. Clearly a=! + b=! = a~!'b~!(a + b). Being a product of three
invertible ideals, a=! 4+ b~! is invertible. Its inverse must be {z|z(a™! +
b-1)C R} =anb. O

4.3.5. Lemma. Let V C W be vector spaces over K and M an
R-submodule of W. Then:

(1) if a is an invertible ideal of R, then VNaM = a(V N M);

(i1) if a,b,a 4 b are invertible ideals of R, then aM NbM = (anb)M.

Proof. (i) Clearly VN aM D a(V N M). On the other hand, a=}(V N
aM) C VnalaM = VN M. Multiplying the second inclusion by a, we
obtain VNnaM C a(V N M).

(i) Note that (a™! + b~')(aM N bM) C M. Multiplying by an b and
applying the previous lemma, we get aM NbM C (aNb)M. The reverse

inclusion 1s obvious. O

4.3.6. Lemma. Let p be a mazimal ideal of R, R, the localization
of R at p, and i a positive integer. Then the natural homomorphism « :

R/p' — R,/p‘R, is an isomorphism.

Proof. We first show that every element a of R not in p has an invert-
ible image in R2/p’. Since R/p is a field, there exists b € R with ab—1 € p.
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Then (ab — 1)*(~1)"*! € p?, but it is evident that (ab—1)}(—1)"*! = ac—1
for some ¢ € R. Thus ac — 1 € p* whence the claim follows.

To prove that the homomorphism « is surjective, take any a/b+piRp €
R,/v'R,. Here b ¢ p, and by the previous remark there exists ¢ such that
be — 1 € p'. But then for ac + p° € R/p’ we have
a

3 + piRp-

(ac 4+ p)* = ac + piRp =
Finally, let ¢ — b € piRp, then @ — b = ¢/d where ¢ € pi,d ¢ p. Therefore
(a — b)d € p* and since d is invertible modulo p, we have ¢ — b € p’. This

shows that « is injective. O
4.3.7. Lemma. Let W, M, p, ¢ be as in the previous lemmas. Then

pPRRMNM =p'M and M/p'M ~ R,M/p'R, M.

Proof. Let z € p!R,M N M. Since z € p°R,M, we have z € pla—' M
for some a ¢ p, whence az € p‘M. As in the proof of the previous lemma,
one can find ¢ € R such that ac—1 &€ p*. Together with the inclusion z € M,
this implies that (ac — 1)z € p’M. On the other hand, az € p’M and so
azc € p'M. Subtracting, we get z € p*M. Thus p'R,M N M C p'M while
the reverse inclusion is obvious.

The proof of the second assertion is similar. O

Recall that a Dedekind domain is an integral domain R all of whose
nonzero fractional ideals are invertible. Since every fractional ideal can be
presented as ad~!, where a is an ideal and 0 # d € R, this is equivalent
to saying that all nonzero ideals of R are invertible. Every nonzero ideal
of a Dedekind domain R has a unique factorization as a product of prime
ideals, every nonzero prime ideal p is maximal, and the localization R, is
a discrete valuation ring. For the details we refer to [104] or to any other
textbook on commutative algebra.

Let now A be an arbitrary ring with 1, not necessary commutative. It is
called a semifir if every finitely generated right ideal of A4 is a free A-module
of unique rank (this condition is left-right symmetric). Let ¢: A — A be a
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surjective homomorphism of rings. It induces the homomorphism of general
linear groups ¢* : GL,,,(A) — GL,,(A) which, in general, is not surjective.
We will say that ¢* is almost surjective if for each matrix U € GL,,(A) one
can find a diagonal matrix D € GLn,(4) such that there exists U € GL,,(4)
with U¢* = UD.

4.3.8. Lemma. Let R be a Dedekind domain, K its field of fractions,
p a nonzero prime ideal of R. Let B be a K-algebra and A an R-subalgebra
of B such that
(i) A/pA is a semifir;
(ii) for every m > 0 the homomorphism GL,,(A) — GL,(A/pA) is
almost surjective.
Then for every right ideal I of B, left ideal J of B and tdeal a of R

a(IN AT N A)NapA = ap(I N A)(J N A).

Proof. “2” is evident. To prove the reverse inclusion, note that R, is
a discrete valuation ring. Its maximal ideal pR, is principal, so pR, = tR,
for some t € Ry. The ideal aR, of Ry must be a power of pR, hence
aR, = p"R, = t"R, for some n > 0.

Take an arbitrary z € a(INA)(JNA)NapA. Since z € a(INA4)(J N A4),

we can write
m
z = Zziyi (:c,- S a(Iﬂ A), ypeJn A) (2)
=1

For each ¢ we have z; € ad C aRy,A = t"R, 4, and so z; = t"z; for some
z: € RyA. On the other hand, since z € ap4 C apR,A = t"t'R 4, it
follows that z = t"*!2' for some 2’ € RyA. If we now divide (2) by t™ and
reduce modulo pR, 4, we get
m
0=) 2§ in RyA/pR,A=A. (3)
=1
In view of Lemma 4.3.7, A ~ A/pA and therefore 4 is a semifir. By
[13, Theorem 1.1.1] the equation (3) can be trivialized by some matrix
U € GL,,(A). This means that in the relation

(#'0)-(U~'g) =0, (4)
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where &' = (z},...,2,) and § = (%1,-..,Tm)7T, for each i either the i-th
component of Z'U is zero or the i-th component of U ~!§ is zero. By (ii), one
can find a diagonal matrix D € GL,,(A) such that there exists U € GL,,(4)
whose image in GL,,(4) equals UD. Then we first have

(zUD)-(D~'Ug) =0

where again for each i either the i-th component of Z'U D is zero or the i-th

component of D=1 ~1§ is zero. Second, applying U to (2), we obtain

z—z gyi=z-y=(zU) - (U~ y=£ Q=Z:c,y, (5)

where we still have &; € a(INA4), §: € TN A, & =1t"&,, &; € RyA. In

addition, now for each i
2, ¢ pRyA or §; €pRyA, (6)

because our construction guarantees that the homomorphism R,4 — A
maps & to the i-th component of Z’UD and §; to the i-th component of
D-1U-'j. To complete the proof, it suffices to show that each summand
2;9: of (5) belongs to ap(I N A)(J N 4).

Choose any value of i for which the second alternative in (6) holds.
Keeping in mind that A4 is flat as an R-module and using successively Lem-
mas 4.3.7 and 4.3.5(i1), we have

9 €pR,AN(INA)=(pR,ANA)NT =pANnJT =p(JNA)

whence &;§; € a(I N A)p(J N A) = ap(I N A)(J N A), as desired.

Now suppose the first alternative in (6) holds. Then &; = t"&] ¢
p"t'R, A, so this element lies in p"t'R,AN A = p"*t!' 4 (Lemma 4.3.7).
Since it also lies in a A, by Lemma 4.3.5(ii) it belongs to (a N p”+1)A4. Fur-
thermore, &; € I and by Lemma 4.3.5(1) we have

8; € In(anp™4 = (anp™)I N A). (7)

But it is easy to show that anp™t! = ap. Indeed, from aR, = p"R, we
deduce that ap C p™*?, and so

ap Canp™? Ca.
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The second inclusion here is proper, for otherwise p™*t! D a which is in
contradiction with aR, = p™R,. But by the unique factorization of ideals in
a Dedekind domain, there can be no ideals strictly between a and ap. Thus
anp™! =ap. By (7), #; € ap(IN A) and so &;9; € ap(INA)JNA). O

4.3.9. Lemma. Under conditions and notation of the previous lemma,
let (i) and (i) be satisfied for every prime ideal of R. Then

(INA)JNA)Nad =a(lnA)J N 4).

Proof. Let a = p;...pn be the prime factorization of a. We proceed
by induction on n. If n = 1, then the previous lemma (with a = R) gives

the result. Assume that for n — 1 everything has been proved. By Lemma
4.3.8

PrecPaaa(INATNA)YNP;...pnAd =p1...0.(IN AT N A).
On the other hand, by induction hypothesis
INAITNANP)...PpngA=p1...0na(IN AT N A).
Therefore

(INA)IJNnANad=(INA)JNA)Np;...p4
=INAITNANP1...pp1ANDPy...P- A
=p1.pna(INAN TN A NPy ...pd
=p...pn(INA)JNA)=ad O

Proof of Theorem 4.3.3. Denote RF = A and KF = B. We

have to prove that
ITNnA=(INA)JNA) (8)

for a right ideal I of B and a left ideal J of B. Note first that A satisfies the
conditions (i) and (ii) of Lemma 4.3.8 for every prime ideal p of R. Indeed,
A/pA is isomorphic to (R/pR)F, the group algebra of the free group F
over the field R/pR. By [4', Corollary IV.5.17], A/pA = A is a generalized
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euclidean ring. This first means that 4 is a fir, whence (i) follows. Second,
this means that every matrix U € GL,,(4) can be written as a product
U = E,...E,D, where each Ej is an elementary matrix (i.e. a matrix of
the form I + @e;; with @ € A and i # j) and D is an invertible diagonal
matrix. Then UD~! = E, ... E,. Since every elementary matrix can be
lifted from A to A, the matrix T D~! can be lifted as well, and we obtain
(i1).

To prove the nontrivial part of (8), note that every a € IJ can be
writtenin the forma = a1 Y] u;v;, where 0 # a € R, u; € INA4, v; € JNA.
If nowa € IJN A, then

aa e (INA)JNA)Nad.
On the other hand, by Lemma 4.3.9
(InA)JNnA)N(a)d = (a)(I N A)J N A).
Therefore aa € a(IN A)(J N A) and so a € (I N A)(J N A), as required. O

4.3.10. Corollary (Vovsi [94, Corollary 9.9]). Let R be a Dedekind
domain and K its field of fractions. Then the pure varieties of group rep-
resentations over R form a subsemigroup in M(R) which is tsomorphic to
M(K) (and therefore is free). O

The question whether this fact is valid over an arbitrary integral domain
has remained open for more than fifteen years. Quite recently the author

has found a counterexample showing that it is not the case.

4.3.11. Theorem. There exists an integral domain R and a verbal
ideal I of KF, where K is the field of fractions of R, such that

I’ RF # (IN RF)%. (9)

Sketch of Proof. Let k be a field of characteristic # 2,3, K = k(s)
be the field of rational functions over k in a variable s, and R = k[s?, s*].
Clearly K is the field of fractions of R. Let I be the verbal ideal of K F

generated by two elements

2
U= Z¥Z2 — 8222, V= 212902324



4.3. MULTIPLICATION OF PURE VARIETIES 173
where, as usual, z; = #; — 1. To prove (9), consider the element

w=(su)? = s?2l22l 2 — P 212220 — SPzatay + st 202] 2020
in KF. It belongs to I%, and since its coefficients lie in R, we have w €
I?N RF. 1t remains to show that w ¢ (I N RF)2.
Suppose the contrary. Then

w=1uyv + -0+ UyUy (10)

where u;,v; € IN RF. Since A® D I O A%, the ideal I is homogeneous.
Using this observation and some arguments from §1.2, one can reduce (10)
to the case when all the u;,v; involve only the variables z;,z, and are
homogeneous of degree 2 in z; and homogeneous of degree 1 in 2;. Thus we
can assume that F is the free group of rank 2. Then a careful analysis of the
module K F/I shows that dimg(KF/I) =9. Since dimg(KF/A*) =15, it
follows that dimg(I/A*) = 6. Furthermore, one can show that the elements

3 3 2 2 2 2
zy, Zo, 2123 — 8222], 252) — 82125,

212921 + (1 + s)zzzlz, 292122 + (1 + s)zlzg

form a basis of I over A*. This implies that each u; and v; is a K-linear
combination of two elements zfzz - szzzlz, znz2z +(1+ s)zzzf. However,
substituting these combinations in (10) and combining similar terms, we
will eventually see that the coeflicients of the resulting expression can not

belong to R. This yields the desired contradiction.

In conclusion we note that the results of the present section are also
valid for free associative algebras and T-ideals. Namely, let R be an inte-
gral domain, K its field of fractions, R{(X) and K{(X) the free associative
algebras over R and K respectively. Then:

(1) If R is a Dedekind domain, then

IJ N R(X) = (I n R{X))(J N R(X))

for every right ideal I and every left ideal J of K{(X).
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(11) Let k be a field of characteristic # 2,3, K = k(s) and R = k[s?, s%].
If I is the T-ideal of K(X) generated by z%z, — sz,z2 and z;z22324, then

I’NR(X) # (InR(X)).

The proofs of these statements are virtually the same as those of The-
orem 4.3.3 and 4.3.11. Moreover, (i) formally follows from the proof of
Theorem 4.3.3: one should only set in the latter A = R(X) and B = K(X).

4.4. Intersection of pure varieties

In the present short section we follow [96].

Let X and ) be two pure varieties over an arbitrary integral domain.
We already know that if this domain is good enough, then the product XY
is also pure. Now one can naturally ask whether the property of pureness is
compatible with the lattice operations on varieties. Clearly the join & V)
of pure varieties is always pure, so that it remains to understand whether
the intersection of pure varieties is pure. At the end of the section we will
show that it is not the case even over the ring of integers. To obtain this
result, we will define and investigate a natural series of varieties which are
of some interest in their own right. An important property of these varieties
is that their identities can be completely described in terms of the Magnus
presentation of the free group algebra by formal power series.

Let K be an arbitrary commutative ring with 1. For every n = 2,3,...
denote by V,, the variety of group representations over K defined by the
identities

(z-1)" and (z1—-1)z2—-1)...(Tn4+1 —1).
In other words, V, = U, N S™!, where U, is the variety of n-unipotent
representations. Therefore, denoting V,, = IdV,, and U,, = IdU,,, we have
Va=U, + A"

Our first aim is to find conditions on an element v € K F which would
be necessary and sufficient for u to lie in V;,. Recall that v can be uniquely

presented as formal power series

u=up)tymy+- o+ yUn +-..., where U(n) = Z 6,‘1__.,'“7.,'1 e Ziny
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and that the coeflicients of this decomposition are just the corresponding

Fox derivatives at 1:

bi.in = Oiy.inu(l) (1)

(see §0.5). Further, if {¢1,...,2,} is an arbitrary multiset (i.e. a collection
of elements where some elements may occur more than once), then the set
of all its permutations is denoted by S(i1,...,%,). For example, S(1,1,2)
consists of three permutations (1,1,2),(1,2,1),(2,1,1); 5(1,2, 3) consists of
six permutations; etc.

The following result gives a desired criterion under a slight restriction
on the ground ring K. In its formulation the indices ¢,7,,72,... indepen-

dently run over the set of positive integers.

4.4.1. Proposition. The following conditions are necessary for u €
KF to belong to Vy,:

(@) vy =ua)y ="+ =@n-_1)=0;

(b) bip.is = bo(in)..o(ir) for all @ € S(i1,...,1n).

If (n —1)! is a unit in K, these conditions are also sufficient.

Proof. Necessity. Take an arbitrary v € V,, = U, + A""1. Then
u € A™ and (a) is trivial. To prove (b), we will use (1). Since elements from
A"t certainly satisfy (b) and since all Fox derivatives are linear maps, we
may assume u € U,. It is easy to see that U, is generated by elements
(f —1)*, where f € F, as a left ideal. Hence v = ), vi(fr — 1)" for some
v € KF, fi € F. Again by the linearity of the Fox derivatives, we may
assume that v = v(f — 1)* where u € KF, f € F.

Let w = w(zi,...,2,) be an arbitrary element from KF. For brevity,
the scalar w(l,...,1) = w(1) will be denoted by @. Applying (4) from §0.5,

for the given u = v(f — 1)" we successively obtain:

Binu =8, (v(f = 1)) =o(f - 1)" '8 f;
Bipiyu = B3, (v(f —1)"71 8, f)
=v(f —1)"20,f - O, f+o(f —1)" '8y, f
=o[(f = 1)" 80 f+ (f —1)" 7205, f - Bir f]-
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Assume now that for ¥ < n we have already proved that
By = 0[(f = 1) or + (f = 1) Pwp 4o+ (F = 1) k]

where w,,...,w; are some elements from K F and wy =8, f0;,_,f...0;, f.
Then

B prinnint = Oip , (V[(f — 1) w0y + -+ 4 (F — 1) Favy])
=08, L [(F = 1) wy + o+ (F = 1) Fwy]
=o[(f - 1) 20y f BT+ (f - 1)y, w0+
+(f =10 f W+ (F = 1) 20, wa + ...
+(f =1V, L f o TE + (f — 1) 05, wi]
=of(f —1)" 7wy + (f — 1) Pwh + e 4 (f = 1) Dwp ]

where

Wiy = Oppn [Tk = aiH,fai,‘f...W.

By induction we conclude that
ain---ﬁu = ‘U[(f - l)n_lwl +---+ (f - l)wn—l + wn]

where w, = 0;, f8;,_, f... 0, f. Therefore

G iyu=v08_f 0, ,f...0,f

and so é;,..i, = b5(i,)...0s) for any o € S(i1, ..., 1)

Sufficiency. Let u € KF satisfy (a) and (b). Then u can be written as
u= 26,'1___,"‘ Z Zo(iy) + + » Zo(in) +u'
aes(ily-"yin)

where u' € A™*? and the first sum is taken over all multisets {i;,...,i,} of

length n. Therefore it remains to show that

s(ih"-,in): Z Zo(ir)  * * Zo(in) A%
FES(i15009%n)
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for any #1,...,1p.
Note first that s(1,2,...,n) is just the full linearization lin (2") of 2™.
Since A™ DV, D A™*!, the ideal V,, is homogeneous. By Lemma 1.2.2 and

the subsequent note, we have

s(1,2,...,n) € V. (2)
Now let {i1,...,i,} be an arbitrary multiset. Without loss of generality we
may assume that
= =y <1 = =g, <000 <lmpdodbma_1+1 = - .-
= im1+"'+mr
wherem; 4+---+m, =n. If r =1, thatis i, =--. = i,, then s(i1,...,i) =
22 € Vy simply by the definition of V,,. Otherwise 1 <m; <n — 1 for each
i =1,...,r. Let ¢ be an endomorphism of F such that z¥ = z;,, z¥ =
Ti,,...,2¥ = z; . From (2) and straightforward combinatorics we obtain
8(1,... ,n)“’ = ml!...mr!s(il,...,in) c Vn.

Since 1 <m; <n—1and 1/(n—1) € K, it follows that s(f1,...,is) €
Vo. O

The established fact has several corollaries. Let A be a K-module and
B its submodule. If A/B is a free K-module with a basis {a; + B}, then
we say that {a;} is a basis of A over B.

4.4.2. Corollary. If (n — 1)! is a unit in K, then KF/V, is a free
K-module. A basis of KF over V, consists of the elements

1, ziy zizj, vy 2y o0 . Ziy, (3)

and also of all elements of the form z,(i) .- 25(i,), where {i1,...,in} is an

n-multiset and o is its nontrivial permutation.
Proof. Every u € KF is uniquely presented in the form

u=u@)+uq) +-ortumty
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where u(;) is its homogeneous component of degree i and v’ € A™t!. This

determines a natural graded algebra structure on K F':
KF=404:0 04, 0™

Note that 4; @ --- ® A, ® A"t = A® for each 7 = 1,...,n. Since V, lies
between A™ and A™*!, we have V,, = B,, ® A" for some submodule B,
of A,. Thus

KFn/Vni’AO@Al D DA @An/Bn

Elements (3) form a basis of Ao® A; ®---® An_y, so it suffices to show that
the remaining elements from the formulation of the lemma form a basis of
A, over B,,.

Note that the module A, is multigraded: A, = ®4y;,,...i,) where the
sum is taken over all n-multisets {¢1,...,7,} and Ay, . i} is a free module
with the basis {zy(i,) .- Zo(i,) | € S(41,...,%r)}. By Theorem 4.4.1, B,
is a multigraded submodule of A,. More exactly, B, = ®Byj,,. .:,) Where
each By;, ...} is the cyclic K-submodule of Ay, .. ;.) generated by the

element s(iy,...,1,). We have

An/Bn = @ (A{ih---vin}/B{ilv---»in})
{i1yeenrin}
and it is clear that {zy(i,)..- Zo(i,) |1 # o € S(41,---,%x)} is a basis of
A{ih---,in} over B{ih---,in}' D

Now we can answer a question raised at the beginning of this section.

4.4.3. Corollary. There exist pure varieties of group representations

over the ring of integers whose intersection is not pure.

Proof. Consider two varieties over Z: V5 and wB,, where B, is the
variety of groups of exponent 2. By the preceding lemma, V; is pure over
any K. The variety w®B, is pure by trivial reasons. We show that their
intersection is not pure. If Id(w®B2) = I, then Id(V2NwB2) = Vo + I. Since
(z — 1) € Vo, 22 — 1 € I, we have

(22 —1)— (2 — 1) = 2(z — 1) € Id(V2 Nw'B,).
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On the other hand, take the canonical unitriangular representation
utz(F2) = (F2 @ Fa, UT,(F2))

over Fo» = {0,1} regarded as a representation over Z. Clearly this repre-
sentation is contained in S N wMB, C V, NwB,, and since it is nontrivial,
z—1 ¢ Id(V2NwB,). It follows that there is 2-torsion in ZF/Id(V2NwB,),
whence V, Nw'B; is not pure. O

Our concluding remark is concerned with the map /' : M(K) — M(R)
for an integral domain R and its field of fractions K. Let R be a Dedekind
domain. It was proved in the preceding section that in this case ¢/ is a
homomeorphism of semigroups. Is v/ a homomorphism of lattices? Corollary
4.4.3 combined with Lemma 4.3.2 shows that the answer is negative even

over Z.

4.4.4. Corollary. The map v' : M(Q) — M(Z) does not preserve

intersection and therefore is not a homomorphism of lattices. O

4.5. Some applications: an overview

Throughout these notes we have systematically demonstrated that var-
ious algebraic theories can be applied to the study of varieties of group
representations. The purpose of this final section is to present examples
of feedback. We will try to show that the theory of varieties of group
representations has interesting applications in other areas of algebra, such
as varieties of groups, polynomial identities and varieties of rings, and di-
mension subgroups. It is an extensive material, so that our exposition is
inevitably superficial: most of the proofs are not included and some im-
portant results are not mentioned. Nevertheless we hope that this brief

overview will illustrate some possibilities of the theory.

ALGEBRAS WITH NILPOTENT COMMUTATOR IDEAL. Consider the va-
riety of (associative K-) algebras defined by the identity

(z122 — 2221) ... (T2n—1%2n — T2, T2n_1). (1)
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Is such a variety Specht? In other words, does every algebra whose commu-
tator ideal is nilpotent have a finite basis of identities? This question was
investigated in a number of papers devoted to varieties of rings (see e.g. [20,
53]). It was solved in the affirmative over a field of characteristic zero and
over any infinite field if n = 2,3. Now we can easily show that the answer

is positive in a more general situation.

4.5.1. Corollary (Krasil’'nikov [47]). Every associative algebra over
an infinite field, satisfying the identity (1) for some n, has a finite basis of

identities.

Proof is an immediate consequence of Theorems 4.2.6 and 1.3.1. Let
M be the variety of algebras over an infinite field determined by (1). The
variety of group representations M defined as in §1.3 satisfies the identity
(7) from §4.2. By Theorem 4.2.6 M® is Specht and therefore satisfies the
descending chain condition on subvarieties. By Theorem 1.3.1 the map o

is injective, and since it preserves inclusions, M must satisfy the d.c.c. as
well. O

IDENTITIES OF BLOCK-TRIANGULAR MATRICES. For some time, it has
been unknown whether a finitely generated PI-ring satisfies all identities of
some full matrix M,(Z) (see e.g. [14', Problem 2.143]). The Razmyslov—
Kemer-Braun theorem on the nilpotency of radical made it possible to
reduce this problem to a question on identities of block-triangular matrices.
To formulate it, let K be an integral domain and let By, »(K) be the K-
algebra of all (lower) triangular m x m matrices whose entries belong to
M, (K). As usual, for any K-algebra A let T(A) denote the T-ideal of its
identities in K(X). Is it true that

T(Bmn(K)) = [T(Mn(K))|™ 7 (2)

For K a field this equality was proved long ago by Lewin [55']. Now
there are known several approaches allowing one to prove (2) over an ar-
bitrary domain. Following [97], we outline one of these approaches. It is
based on the technique of triangular products developed in the theory of

varieties of group representations.
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Triangular products were introduced by Plotkin (see e.g. [79]) and can
be defined as follows. Let p = (V,G) and ¢ = (W, H) be two representations.
Then ¢ = Homg(W,V) has a natural structure of H-G-bimodule which

allows to define the group of formal matrices

Nz(g g). (3)

This group acts on V @ W by the rule

@w)o (4 ) =wos+us, won) (4)

As a result, we obtain a representation (V & W, N) called the triangular
product of p and o and denoted by p 7 o.
There is a number of results describing the identities of p 7 ¢ in terms

of the identities of p and ¢. We will need one of them.

4.5.2. Theorem (Vovsi [100]). Let p = (V,G) and ¢ = (W, H) be
representations of groups over an tntegral domain K. If the K-modules
V, W, KF/1d(c) are projective, then

1d(p v o) = 1d(c) 1d(p).

It is easy to see that the construction of triangular product is quite
universal and can be literally carried over to linear representations of other
algebraic structures: associative algebras, Lie algebras, semigroups, etc. For
example, if p = (V,G) and ¢ = (W, H) are representations of (associative
K-) algebras, then the triangular product p 7 ¢ = (V & W, N) defined by
(3) and (4) will be also a representation of an algebra. Moreover, all main
results dealing with identities of triangular products of group representa-
tions remain valid for representations of algebras. In particular, there is an

analogue of Theorem 4.5.2 which can be stated as follows.

4.5.2’. Theorem (Vovsi [97]). Let p = (V,G) and ¢ = (W, H) be
faithful representations of algebras over an integral domain K. If the K-
modules V, W, K(X) are projective, then

T (g g) = T(H)T(G).
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Now let p, = (K™, M, (K)) be the natural representation of the full
matrix algebra of degree n. Note that it is faithful, K™ is a free K-module
and ® = Homg (K", K™) = M,(K). Furthermore, it is well known that
the algebra K(X)/T(Mn(K)) (the so-called algebra of generic matrices) is
a free K-module. Hence, by the preceding theorem,

T(EanB) =T (300 111y ) = FMCEOT

By induction (see [97] for the details) we obtain the desired result.

4.5.3. Corollary. If K is an integral domain, then T(Bpno(K)) =
[T(Mn(K))|™

Using well known arguments (see [55'] and [56']), we can now answer
our initial question. Recall that a Jacobson domain is an infinite integral
domain in which every prime ideal is an intersection of maximal ideals. Let
K be a noetherian Jacobson domain and A a finitely generated PI-algebra
over K. If J is the Jacobson radical of A, then 4/J is a subdirect product
of simple algebras @; which are finite-dimensional over their centers Cj,
and the dimensions of Q; over C; are uniformly bounded. Since the K-
algebra M, (C;) is contained in the variety var(M,(K)), this implies that
A/J € var(M,(K)) for some n, that is A/J satisfies all identities from
T = T(M,(K)). By the Razmyslov-Kemer-Braun theorem J is nilpotent
of some index m, so A satisfies all identities from T™. By Corollary 4.5.3,
T™ =T(Bmn(K)) 2 T(Mpmn(K)). Thus:

4.5.4. Corollary. FEvery finitely generated Pl-algebra over a noe-
therian Jacobson domain K satisfies all identities of the algebra M,.(K) for

some r.

SOLUBLE JUST-NON-CROSS VARIETIES OF GROUPS. A variety of groups
is called just-non-Cross if it is non-Cross but every its proper subvariety is
Cross. Using Zorn’s Lemma, one can easily show that every non-Cross va-
riety contains a just-non-Cross subvariety. Therefore, after the structure

of Cross varieties of groups had been characterized in [69] and [44], the
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problem of investigation of just-non-Cross varieties became one of the most
natural.

By the mid-sixties, the following examples of just-non-Cross varieties
were known:

(i) the variety 2 of all abelian groups;

(i) the product A A, where A, is the variety of abelian groups of
exponent p;

(iii) A,A,A. where p,q,r are pairwise distinct primes;

(iv) A0, where p,q are distinct primes, and £, is the variety of 2-
nilpotent groups of exponent ¢ if ¢ is odd, and of exponent 4 if
q=2.

All these varieties are soluble, and it was conjectured by Kovacs and New-
man [46'] that the above list contains all soluble just-non-Cross varieties of
groups.

In 1971 this conjecture was proved by Ol’shansky [71]. It is a deep and
powerful result, and it certainly deserves a separate chapter to be properly
presented. We will only give a rough idea of the structure of its proof, trying
to emphasise the natural connections with varieties of group representations.

From now on U is a soluble just-non-Cross variety of groups. One
has to prove that it coincides with one of the above listed. Suppose that
expTJ = 0. Since every variety of exponent 0 contains 2, it follows that
0 = 2. So we may assume that 2 has a nonzero exponent. In view of
the solubility, U is locally finite. Further, it is proved that if U contains
nilpotent groups of an arbitrarily large class of nilpotence, then U = ‘2[120 for
some p.

In the sequel U is different from 2A and Qlf,. In view of the above, U is
locally finite and the classes of its nilpotent groups are uniformly bounded.
A skillful argument shows that under these conditions B C A,0, where O
is a Cross variety of groups such that p } exp ©. This fact is a key to what
follows because it allows one to reduce the problem to some problem on
varieties of group representations, or more precisely, to bivarieties.

A class of group representations X is called a bivariety if it can be

defined by identities of two sorts: identities of action

you(zy,...,z,)=0 (vi€ KF) (5)
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and identities of the acting group

filzgr,..2n) =1 (fi€ F) (6)

(see [74, Appendix]). It follows from the definition that the study of bivari-
eties can be reduced to the study of varieties of group representations and
varieties of groups, so that this notion does not have a serious independent
value. Nevertheless, it may be useful and convenient in applications, as will
be seen below.

We already know that to each variety of groups © there naturally cor-
responds the variety of representations w®. Denote now by wo® the class
of all representations of groups from ©. Then we® C w®, and we® is a
bivariety but not a variety. On the other hand, for an arbitrary bivariety
X, the class X' of all groups admitting a representation in X is a variety of
groups. Clearly the inclusion X C wo® is equivalent to X’ C O.

We return now to the variety U. It was already noted that U C 2A,0
where O is a soluble Cross variety of groups with p { exp ©. The next stage of
the proof consists in establishing a connection between subvarieties of 2,0
and sub-bivarieties of the bivariety wo® over the prime field F, = Z/pZ. If
is a subvariety of A,0, then let U™ be a bivariety over F, generated by
all representations p = (V,G) such that G € 4N O and V X G € U (where
V X G is the semidirect product corresponding to p). Then U™ C wo® and,
moreover, the following statement holds: « is a one-to-one correspondence
between all subvarieties of A, 0 and all sub-bivarieties of wo© over Fy.

Further, there is a natural connection between bivarieties over the field
F, and bivarieties over its algebraic closure Fp; it is based on maps similar
to the maps v and v/ from §0.4. Together with the above, this yields a
connection between the subvarieties of 2,0 and the sub-bivarieties of wo©®
over F,. A greater part of [71] is devoted to the investigation of these

sub-bivarieties. The following result is of decisive importance.

4.5.5. Theorem (Ol’shansky [71]). Let X be a bivariety over Fp, such
that
(a) X' = O is a soluble Cross variety of groups whose exponent is not

divisible by p;
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(b) X contains infinitely many nonisomorphic finite simple represen-
tations;
(c) ifY is a subvariety of X such that )’ # O, then Y does not possess
property (b).
Then either © C A A, or © C 0, where p,q,r are distinct primes.

The proof of this theorem is difficult and impressive. After that, it is
relatively easy to prove that if U is a just-non-Cross subvariety of %A,0,
O being as before, then either @ C A, A, or © C 9. Therefore either
U C AAA, or U C AN, Since two just-non-Cross varieties can not

properly contain each other, the desired result follows:

4.5.6. Theorem (Ol’shansky [71]). Every soluble just-non-Cross va-

riety coincides with one of the varieties (i) - (iv).

FAITHFUL REPRESENTABILITY AND DIMENSION SUBGROUPS. Let X be
a variety of group representations over a ring K. Denote by X the class
of all grouns G admitting a faithful representation which belongs to A'.
Evidently, X is closed under subgroups and Cartesian products. Moreover,
it is easy to show that X is closed under filtered products and therefore is a
quasivariety of groups [75]. There arises a general problem: for a given X,
describe the quasivariety X in group-theoretic terms. In full generality it is
hardly accessible; the main difficulty is that nobody knows how to extract
the quasi-identities of X from the defining identities of X'.

Since X is a quasi-variety, in each group G there is a normal subgroup
H smallest with respect to the property G/H ¢ x. We denote it by
D y(G), or by Dy (K,G) if the ring K is not clear from the context. Thus

GeX < Dy(@)=1

and the problem of describing the group classes X is equivalent to describing
the subgroups D y (G).

It follows from the definition that D y(G) is equal to the intersection
of the kernels of all representations of G belonging to X, and so it is natural
to say that Dy (G) is the X'-kernel of G. Another definition of D y(G) can
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be given in a purely group ring language. Let I = Id X and let I(G) =
{w(g1,..-,92)|v € I, g € G}. Then I(G) is an ideal of the group ring
K G, and the following formula is straightforward:

D(G) = Gn(1+1(G)).

Consider now an important particular case when X = S", the variety
of n-stable representations. Then I = A™ and Dy (G) = GN(1+ A™(G)) is
nothing else than the n-th dimension subgroup of G over K, usually denoted
by D, (G) = D,(K,G). It is a classical object which seems to have been
first considered by Magnus. An extensive literature is devoted to the study
of the subgroups D,(G) and their characterization in group-theoretic terms
(for the details we refer to [27, 29, 73]). In view of the above, this problem
is equivalent to characterizing the quasivarieties of groups 53, and therefore
can be treated by methods of varieties of group representations.

The characterization of the dimension subgroups over fields is well
known and belongs to Jennings [37,37'] and Mal’cev [63]. But the dimen-
sion subgroups over an arbitrary ring K are little understood, despite the
efforts of numerous researchers. The case K = Z was especially challenging.

For more than thirty years it was unknown whether for any G
Dn(Z7 G) = 7n(G)

where 7,,(G) is the n-th term of the lower central series of G. This equality,
known as the Dimension Subgroup Conjecture, was finally disproved by
Rips [84'] for n = 4 (his counterexample was recently generalized by N.
Gupta to any n > 4).

In terms of the classes g?‘, the Dimension Subgroup Conjecture means
that S* = M, —1, where N, denotes the class of all ¢-nilpotent groups.? The
inclusion 8% C IM,,—, 1s an immediate consequence of Kaloujnine’s theorem
[38], and so the essence of the problem was whether every (n — 1)-nilpotent
group admits a faithful n-stable representation. Now, owing to Rips, we
know that it is not the case. However, two interesting and closely related

questions (raised by Plotkin in about 1970) are still open.

2Unless otherwise specified, the ground ring is Z,
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4.5.7. Problem. Does every n-nilpotent admit a faithful f(n)-stable
representation? Equivalently: does there ezist a function f(n) such that
D¢ny =1 for every n-nilpotent group G ?

Let w be the first infinite ordinal. A representation p = (V, G) is called
w-stable (or residually stable) if NS,V o A™(G) = 0. Denote D, (G) =
Nowy Da(G).

4.5.8. Problem. Does every residually nilpotent group admit a faith-
ful w-stable representation? Equivalently: is it true that D,(G) = 1 for
every residually nilpotent group G?

Two different formulations of the problems naturally suggest two differ-
ent approaches to their solution: an “external” one (based on faithful rep-
resentability), and an “internal” one (based on the group ring technique).
In a sense, these approaches go back to Mal’cev [63] and Jennings [37] re-
spectively. The first approach is directly connected with the subject of this
book; to illustrate it, let us show for instance how Problem 4.5.7 can be

reduced to finite p-groups. Suppose we already know that for all p all finite

_—
n-nilpotent p-groups belong to some class Sf(®). Being a quasivariety, this
class is residually closed. Since a finitely generated nilpotent group is a

residually p-group, it follows that this class contains all finitely generated

nilpotent groups. But a quasivariety is a local class, and so :ST(’:)) must
contain all n-nilpotent groups, as required. A similar argument reduces
Problem 4.5.8 to nilpotent p-groups.

We note a few results whose proofs are based on the idea of faithful

representability.

4.5.9. Theorem (Kushkuley [50']). Let G be a nilpotent group and
A its normal subgroup such that G/A is either torsion-free or finite. If A
admits a faithful stable representation, then so does G.

4.5.10. Corollary. For G and A as above:
(1) if Ds(A) =1 for some s, then Dy(G) =1 for some t;
(i) if Dy(A) =1, then D,(G)=1. O
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4.5.11. Theorem (Plotkin [75']). If G is a residually nilpotent group
of finite (Mal’cev special) rank, then D,(G) =1.

Further development of these results has been obtained by Hartley (see
(29, §2] for the details).

Our concluding remark is concerned with higher transfinite dimension
subgroups over a field. The transfinite powers of the augmentationideal A =
A(G) are defined by A°t! = A®A and A* =), ., A* for a limit ordinal
A; then the corresponding dimension subgroups are Do(G) = GN (1 + A%).
Since for & < w the group-theoretic characterization of the D(G) over
a field is well known, there arises a desire to complete the picture and to
obtain such a characterization for any a. Without going into detail, we note
that this is equivalent to the characterization of naturally defined classes P

of “generalized stable groups”. The following result solves the problem.

4.5.12. Theorem (Vovsi [92']). Let a be an arbitrary ordinal. Denote
by B = B(a) the unique ordinal satisfying the relation wP < a < wWP*?, and
by n = n(a) the first positive integer for which a < wPn. Then over any
ground field

5% =543,

This theorem gives an explicit description of the dimension subgroup
D4 (@G) for any o and over any field K (if the word “explicit” can in fact be
used in conjunction with transfinite numbers!). To illustrate this claim, let
for example o = w?54+ w213+ 43 and char K = 0. Then B(a) = 3, n(a) =5

— -2 —
and so §% = §°(5“)3. In terms of dimension subgroups this means that
Do(G) = Ds(Duw(Du(Du(@))))-

By Mal’cev-Jennings’ theorem, for any n < w we have D,(G) = /7(G),

the isolator of the n-th term of the lower central series. Thus

Da(G) = \/;5(\/ w(V YV 7w(G))))'

Having created such a frightening formula, the author feels that it is

time to come to a stop.
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